bitstream_io/
lib.rs

1// Copyright 2017 Brian Langenberger
2//
3// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
6// option. This file may not be copied, modified, or distributed
7// except according to those terms.
8
9//! Traits and helpers for bitstream handling functionality
10//!
11//! Bitstream readers are for reading signed and unsigned integer
12//! values from a stream whose sizes may not be whole bytes.
13//! Bitstream writers are for writing signed and unsigned integer
14//! values to a stream, also potentially un-aligned at a whole byte.
15//!
16//! Both big-endian and little-endian streams are supported.
17//!
18//! The only requirement for wrapped reader streams is that they must
19//! implement the [`io::Read`] trait, and the only requirement
20//! for writer streams is that they must implement the [`io::Write`] trait.
21//!
22//! In addition, reader streams do not consume any more bytes
23//! from the underlying reader than necessary, buffering only a
24//! single partial byte as needed.
25//! Writer streams also write out all whole bytes as they are accumulated.
26//!
27//! Readers and writers are also designed to work with integer
28//! types of any possible size.
29//! Many of Rust's built-in integer types are supported by default.
30
31//! # Minimum Compiler Version
32//!
33//! Beginning with version 2.4, the minimum compiler version has been
34//! updated to Rust 1.79.
35//!
36//! The issue is that reading an excessive number of
37//! bits to a type which is too small to hold them,
38//! or writing an excessive number of bits from too small of a type,
39//! are always errors:
40//! ```
41//! use std::io::{Read, Cursor};
42//! use bitstream_io::{BigEndian, BitReader, BitRead};
43//! let data = [0; 10];
44//! let mut r = BitReader::endian(Cursor::new(&data), BigEndian);
45//! let x: Result<u32, _> = r.read_var(64);  // reading 64 bits to u32 always fails at runtime
46//! assert!(x.is_err());
47//! ```
48//! but those errors will not be caught until the program runs,
49//! which is less than ideal for the common case in which
50//! the number of bits is already known at compile-time.
51//!
52//! But starting with Rust 1.79, we can now have read and write methods
53//! which take a constant number of bits and can validate the number of bits
54//! are small enough for the type being read/written at compile-time:
55//! ```rust,compile_fail
56//! use std::io::{Read, Cursor};
57//! use bitstream_io::{BigEndian, BitReader, BitRead};
58//! let data = [0; 10];
59//! let mut r = BitReader::endian(Cursor::new(&data), BigEndian);
60//! let x: Result<u32, _> = r.read::<64, _>();  // doesn't compile at all
61//! ```
62//! Since catching potential bugs at compile-time is preferable
63//! to encountering errors at runtime, this will hopefully be
64//! an improvement in the long run.
65
66//! # Changes From 3.X.X
67//!
68//! Version 4.0.0 features significant optimizations to the [`BitRecorder`]
69//! and deprecates the [`BitCounter`] in favor of [`BitsWritten`],
70//! which no longer requires specifying an endianness.
71//!
72//! In addition, the [`BitRead::read_bytes`] and [`BitWrite::write_bytes`]
73//! methods are significantly optimized in the case of non-aligned
74//! reads and writes.
75//!
76//! Finally, the [`Endianness`] traits have been sealed so as not
77//! to be implemented by other packages.  Given that other endianness
78//! types are extremely rare in file formats and end users should not
79//! have to implement this trait themselves, this should not be a
80//! concern.
81//!
82//! # Changes From 2.X.X
83//!
84//! Version 3.0.0 has made many breaking changes to the [`BitRead`] and
85//! [`BitWrite`] traits.
86//!
87//! The [`BitRead::read`] method takes a constant number of bits,
88//! and the [`BitRead::read_var`] method takes a variable number of bits
89//! (reversing the older [`BitRead2::read_in`] and [`BitRead2::read`]
90//! calling methods to emphasize using the constant-based one,
91//! which can do more validation at compile-time).
92//! A new [`BitRead2`] trait uses the older calling convention
93//! for compatibility with existing code and is available
94//! for anything implementing [`BitRead`].
95//!
96//! In addition, the main reading methods return primitive types which
97//! implement a new [`Integer`] trait,
98//! which delegates to [`BitRead::read_unsigned`]
99//! or [`BitRead::read_signed`] depending on whether the output
100//! is an unsigned or signed type.
101//!
102//! [`BitWrite::write`] and [`BitWrite::write_var`] work
103//! similarly to the reader's `read` methods, taking anything
104//! that implements [`Integer`] and writing an unsigned or
105//! signed value to [`BitWrite::write_unsigned`] or
106//! [`BitWrite::write_signed`] as appropriate.
107//!
108//! And as with reading, a [`BitWrite2`] trait is offered
109//! for compatibility.
110//!
111//! In addition, the Huffman code handling has been rewritten
112//! to use a small amount of macro magic to write
113//! code to read and write symbols at compile-time.
114//! This is significantly faster than the older version
115//! and can no longer fail to compile at runtime.
116//!
117//! Lastly, there's a new [`BitCount`] struct which wraps a humble
118//! `u32` but encodes the maximum possible number of bits
119//! at the type level.
120//! This is intended for file formats which encode the number
121//! of bits to be read in the format itself.
122//! For example, FLAC's predictor coefficient precision
123//! is a 4 bit value which indicates how large each predictor
124//! coefficient is in bits
125//! (each coefficient might be an `i32` type).
126//! By keeping track of the maximum value at compile time
127//! (4 bits' worth, in this case), we can eliminate
128//! any need to check that coefficients aren't too large
129//! for an `i32` at runtime.
130//! This is accomplished by using [`BitRead::read_count`] to
131//! read a [`BitCount`] and then reading final values with
132//! that number of bits using [`BitRead::read_counted`].
133
134//! # Migrating From Pre 1.0.0
135//!
136//! There are now [`BitRead`] and [`BitWrite`] traits for bitstream
137//! reading and writing (analogous to the standard library's
138//! `Read` and `Write` traits) which you will also need to import.
139//! The upside to this approach is that library consumers
140//! can now make functions and methods generic over any sort
141//! of bit reader or bit writer, regardless of the underlying
142//! stream byte source or endianness.
143
144#![warn(missing_docs)]
145#![forbid(unsafe_code)]
146#![no_std]
147
148extern crate alloc;
149#[cfg(feature = "std")]
150extern crate std;
151
152#[cfg(not(feature = "std"))]
153use core2::io;
154
155use core::convert::TryInto;
156use core::num::NonZero;
157use core::ops::{
158    BitAnd, BitOr, BitOrAssign, BitXor, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub,
159};
160use core::{fmt::Debug, marker::PhantomData, mem};
161#[cfg(feature = "std")]
162use std::io;
163
164pub mod huffman;
165pub mod read;
166pub mod write;
167pub use read::{
168    BitRead, BitRead2, BitReader, ByteRead, ByteReader, FromBitStream, FromBitStreamUsing,
169    FromBitStreamWith, FromByteStream, FromByteStreamUsing, FromByteStreamWith,
170};
171pub use write::{
172    BitRecorder, BitWrite, BitWrite2, BitWriter, BitsWritten, ByteWrite, ByteWriter, ToBitStream,
173    ToBitStreamUsing, ToBitStreamWith, ToByteStream, ToByteStreamUsing, ToByteStreamWith,
174};
175
176#[allow(deprecated)]
177pub use write::BitCounter;
178
179/// A trait intended for simple fixed-length primitives (such as ints and floats)
180/// which allows them to be read and written to streams of
181/// different endiannesses verbatim.
182pub trait Primitive {
183    /// The raw byte representation of this numeric type
184    type Bytes: AsRef<[u8]> + AsMut<[u8]>;
185
186    /// An empty buffer of this type's size
187    fn buffer() -> Self::Bytes;
188
189    /// Our value in big-endian bytes
190    fn to_be_bytes(self) -> Self::Bytes;
191
192    /// Our value in little-endian bytes
193    fn to_le_bytes(self) -> Self::Bytes;
194
195    /// Convert big-endian bytes to our value
196    fn from_be_bytes(bytes: Self::Bytes) -> Self;
197
198    /// Convert little-endian bytes to our value
199    fn from_le_bytes(bytes: Self::Bytes) -> Self;
200}
201
202macro_rules! define_primitive_numeric {
203    ($t:ty) => {
204        impl Primitive for $t {
205            type Bytes = [u8; mem::size_of::<$t>()];
206
207            #[inline(always)]
208            fn buffer() -> Self::Bytes {
209                [0; mem::size_of::<$t>()]
210            }
211            #[inline(always)]
212            fn to_be_bytes(self) -> Self::Bytes {
213                self.to_be_bytes()
214            }
215            #[inline(always)]
216            fn to_le_bytes(self) -> Self::Bytes {
217                self.to_le_bytes()
218            }
219            #[inline(always)]
220            fn from_be_bytes(bytes: Self::Bytes) -> Self {
221                <$t>::from_be_bytes(bytes)
222            }
223            #[inline(always)]
224            fn from_le_bytes(bytes: Self::Bytes) -> Self {
225                <$t>::from_le_bytes(bytes)
226            }
227        }
228    };
229}
230
231impl<const N: usize> Primitive for [u8; N] {
232    type Bytes = [u8; N];
233
234    #[inline(always)]
235    fn buffer() -> Self::Bytes {
236        [0; N]
237    }
238
239    #[inline(always)]
240    fn to_be_bytes(self) -> Self::Bytes {
241        self
242    }
243
244    #[inline(always)]
245    fn to_le_bytes(self) -> Self::Bytes {
246        self
247    }
248
249    #[inline(always)]
250    fn from_be_bytes(bytes: Self::Bytes) -> Self {
251        bytes
252    }
253
254    #[inline(always)]
255    fn from_le_bytes(bytes: Self::Bytes) -> Self {
256        bytes
257    }
258}
259
260/// This trait is for integer types which can be read or written
261/// to a bit stream as a partial amount of bits.
262///
263/// It unifies signed and unsigned integer types by delegating
264/// reads and writes to the signed and unsigned reading
265/// and writing methods as appropriate.
266pub trait Integer {
267    /// Reads a value of ourself from the stream
268    /// with the given number of bits.
269    ///
270    /// # Errors
271    ///
272    /// Passes along any I/O error from the underlying stream.
273    /// A compile-time error occurs if the given number of bits
274    /// is larger than our type.
275    fn read<const BITS: u32, R: BitRead + ?Sized>(reader: &mut R) -> io::Result<Self>
276    where
277        Self: Sized;
278
279    /// Reads a value of ourself from the stream
280    /// with the given number of bits.
281    ///
282    /// # Errors
283    ///
284    /// Passes along any I/O error from the underlying stream.
285    /// Also returns an error if our type is too small
286    /// to hold the requested number of bits.
287    fn read_var<const MAX: u32, R>(reader: &mut R, bits: BitCount<MAX>) -> io::Result<Self>
288    where
289        R: BitRead + ?Sized,
290        Self: Sized;
291
292    /// Writes ourself to the stream using the given const number of bits.
293    ///
294    /// # Errors
295    ///
296    /// Passes along any I/O error from the underlying stream.
297    /// Returns an error if our value is too large
298    /// to fit the given number of bits.
299    /// A compile-time error occurs if the given number of bits
300    /// is larger than our type.
301    fn write<const BITS: u32, W: BitWrite + ?Sized>(self, writer: &mut W) -> io::Result<()>;
302
303    /// Writes ourself to the stream using the given number of bits.
304    ///
305    /// # Errors
306    ///
307    /// Passes along any I/O error from the underlying stream.
308    /// Returns an error if our value is too small
309    /// to hold the given number of bits.
310    /// Returns an error if our value is too large
311    /// to fit the given number of bits.
312    fn write_var<const MAX: u32, W: BitWrite + ?Sized>(
313        self,
314        writer: &mut W,
315        bits: BitCount<MAX>,
316    ) -> io::Result<()>;
317}
318
319/// Reading and writing booleans as `Integer` requires the number of bits to be 1.
320///
321/// This is more useful when combined with the fixed array target
322/// for reading blocks of bit flags.
323///
324/// # Example
325/// ```
326/// use bitstream_io::{BitReader, BitRead, BigEndian};
327///
328/// #[derive(Debug, PartialEq, Eq)]
329/// struct Flags {
330///     a: bool,
331///     b: bool,
332///     c: bool,
333///     d: bool,
334/// }
335///
336/// let data: &[u8] = &[0b1011_0000];
337/// let mut r = BitReader::endian(data, BigEndian);
338/// // note the number of bits must be 1 per read
339/// // while the quantity of flags is indicated by the array length
340/// let flags = r.read::<1, [bool; 4]>().map(|[a, b, c, d]| Flags { a, b, c, d }).unwrap();
341/// assert_eq!(flags, Flags { a: true, b: false, c: true, d: true });
342/// ```
343impl Integer for bool {
344    #[inline(always)]
345    fn read<const BITS: u32, R: BitRead + ?Sized>(reader: &mut R) -> io::Result<Self>
346    where
347        Self: Sized,
348    {
349        const {
350            assert!(BITS == 1, "booleans require exactly 1 bit");
351        }
352
353        reader.read_bit()
354    }
355
356    fn read_var<const MAX: u32, R>(
357        reader: &mut R,
358        BitCount { bits }: BitCount<MAX>,
359    ) -> io::Result<Self>
360    where
361        R: BitRead + ?Sized,
362        Self: Sized,
363    {
364        if bits == 1 {
365            reader.read_bit()
366        } else {
367            Err(io::Error::new(
368                io::ErrorKind::InvalidInput,
369                "booleans require exactly 1 bit",
370            ))
371        }
372    }
373
374    #[inline(always)]
375    fn write<const BITS: u32, W: BitWrite + ?Sized>(self, writer: &mut W) -> io::Result<()> {
376        const {
377            assert!(BITS == 1, "booleans require exactly 1 bit");
378        }
379
380        writer.write_bit(self)
381    }
382
383    fn write_var<const MAX: u32, W: BitWrite + ?Sized>(
384        self,
385        writer: &mut W,
386        BitCount { bits }: BitCount<MAX>,
387    ) -> io::Result<()> {
388        if bits == 1 {
389            writer.write_bit(self)
390        } else {
391            Err(io::Error::new(
392                io::ErrorKind::InvalidInput,
393                "booleans require exactly 1 bit",
394            ))
395        }
396    }
397}
398
399impl<const SIZE: usize, I: Integer + Copy + Default> Integer for [I; SIZE] {
400    #[inline]
401    fn read<const BITS: u32, R: BitRead + ?Sized>(reader: &mut R) -> io::Result<Self>
402    where
403        Self: Sized,
404    {
405        let mut a = [I::default(); SIZE];
406
407        a.iter_mut().try_for_each(|v| {
408            *v = reader.read::<BITS, I>()?;
409            Ok::<(), io::Error>(())
410        })?;
411
412        Ok(a)
413    }
414
415    #[inline]
416    fn read_var<const MAX: u32, R>(reader: &mut R, count: BitCount<MAX>) -> io::Result<Self>
417    where
418        R: BitRead + ?Sized,
419        Self: Sized,
420    {
421        let mut a = [I::default(); SIZE];
422
423        a.iter_mut().try_for_each(|v| {
424            *v = reader.read_counted(count)?;
425            Ok::<(), io::Error>(())
426        })?;
427
428        Ok(a)
429    }
430
431    #[inline]
432    fn write<const BITS: u32, W: BitWrite + ?Sized>(self, writer: &mut W) -> io::Result<()> {
433        IntoIterator::into_iter(self).try_for_each(|v| writer.write::<BITS, I>(v))
434    }
435
436    #[inline]
437    fn write_var<const MAX: u32, W: BitWrite + ?Sized>(
438        self,
439        writer: &mut W,
440        count: BitCount<MAX>,
441    ) -> io::Result<()> {
442        IntoIterator::into_iter(self).try_for_each(|v| writer.write_counted(count, v))
443    }
444}
445
446/// This trait extends many common integer types (both unsigned and signed)
447/// with a few trivial methods so that they can be used
448/// with the bitstream handling traits.
449pub trait Numeric:
450    Primitive
451    + Sized
452    + Copy
453    + Default
454    + Debug
455    + PartialOrd
456    + Shl<u32, Output = Self>
457    + ShlAssign<u32>
458    + Shr<u32, Output = Self>
459    + ShrAssign<u32>
460    + Rem<Self, Output = Self>
461    + RemAssign<Self>
462    + BitAnd<Self, Output = Self>
463    + BitOr<Self, Output = Self>
464    + BitOrAssign<Self>
465    + BitXor<Self, Output = Self>
466    + Not<Output = Self>
467    + Sub<Self, Output = Self>
468{
469    /// Size of type in bits
470    const BITS_SIZE: u32;
471
472    /// The value of 0 in this type
473    const ZERO: Self;
474
475    /// The value of 1 in this type
476    const ONE: Self;
477
478    /// Returns a `u8` value in this type
479    fn from_u8(u: u8) -> Self;
480
481    /// Assuming 0 <= value < 256, returns this value as a `u8` type
482    fn to_u8(self) -> u8;
483}
484
485macro_rules! define_numeric {
486    ($t:ty) => {
487        define_primitive_numeric!($t);
488
489        impl Numeric for $t {
490            const BITS_SIZE: u32 = mem::size_of::<$t>() as u32 * 8;
491
492            const ZERO: Self = 0;
493
494            const ONE: Self = 1;
495
496            #[inline(always)]
497            fn from_u8(u: u8) -> Self {
498                u as $t
499            }
500            #[inline(always)]
501            fn to_u8(self) -> u8 {
502                self as u8
503            }
504        }
505    };
506}
507
508/// This trait extends many common unsigned integer types
509/// so that they can be used with the bitstream handling traits.
510pub trait UnsignedInteger: Numeric {
511    /// This type's most-significant bit
512    const MSB_BIT: Self;
513
514    /// This type's least significant bit
515    const LSB_BIT: Self;
516
517    /// This type with all bits set
518    const ALL: Self;
519
520    /// The signed variant of ourself
521    type Signed: SignedInteger<Unsigned = Self>;
522
523    /// Given a twos-complement value,
524    /// return this value is a non-negative signed number.
525    /// The location of the sign bit depends on the stream's endianness
526    /// and is not stored in the result.
527    ///
528    /// # Example
529    /// ```
530    /// use bitstream_io::UnsignedInteger;
531    /// assert_eq!(0b00000001u8.as_non_negative(), 1i8);
532    /// ```
533    fn as_non_negative(self) -> Self::Signed;
534
535    /// Given a two-complement positive value and certain number of bits,
536    /// returns this value as a negative signed number.
537    /// The location of the sign bit depends on the stream's endianness
538    /// and is not stored in the result.
539    ///
540    /// # Example
541    /// ```
542    /// use bitstream_io::UnsignedInteger;
543    /// assert_eq!(0b01111111u8.as_negative(8), -1i8);
544    /// ```
545    fn as_negative(self, bits: u32) -> Self::Signed;
546
547    /// Given a two-complement positive value and certain number of bits,
548    /// returns this value as a negative number.
549    ///
550    /// # Example
551    /// ```
552    /// use bitstream_io::UnsignedInteger;
553    /// assert_eq!(0b01111111u8.as_negative_fixed::<8>(), -1i8);
554    /// ```
555    fn as_negative_fixed<const BITS: u32>(self) -> Self::Signed;
556
557    /// Checked shift left
558    fn checked_shl(self, rhs: u32) -> Option<Self>;
559
560    /// Checked shift right
561    fn checked_shr(self, rhs: u32) -> Option<Self>;
562
563    /// Shift left up to our length in bits
564    ///
565    /// If rhs equals our length in bits, returns default
566    fn shl_default(self, rhs: u32) -> Self {
567        self.checked_shl(rhs).unwrap_or(Self::ZERO)
568    }
569
570    /// Shift left up to our length in bits
571    ///
572    /// If rhs equals our length in bits, returns zero
573    fn shr_default(self, rhs: u32) -> Self {
574        self.checked_shr(rhs).unwrap_or(Self::ZERO)
575    }
576}
577
578macro_rules! define_unsigned_integer {
579    ($t:ty, $s:ty) => {
580        define_numeric!($t);
581
582        impl UnsignedInteger for $t {
583            type Signed = $s;
584
585            const MSB_BIT: Self = 1 << (Self::BITS_SIZE - 1);
586
587            const LSB_BIT: Self = 1;
588
589            const ALL: Self = <$t>::MAX;
590
591            #[inline(always)]
592            fn as_non_negative(self) -> Self::Signed {
593                self as $s
594            }
595            #[inline(always)]
596            fn as_negative(self, bits: u32) -> Self::Signed {
597                (self as $s) + (-1 << (bits - 1))
598            }
599            #[inline(always)]
600            fn as_negative_fixed<const BITS: u32>(self) -> Self::Signed {
601                (self as $s) + (-1 << (BITS - 1))
602            }
603            #[inline(always)]
604            fn checked_shl(self, rhs: u32) -> Option<Self> {
605                self.checked_shl(rhs)
606            }
607            #[inline(always)]
608            fn checked_shr(self, rhs: u32) -> Option<Self> {
609                self.checked_shr(rhs)
610            }
611            // TODO - enable these in the future
612            // #[inline(always)]
613            // fn shl_default(self, rhs: u32) -> Self {
614            //     self.unbounded_shl(rhs)
615            // }
616            // #[inline(always)]
617            // fn shr_default(self, rhs: u32) -> Self {
618            //     self.unbounded_shr(rhs)
619            // }
620        }
621
622        impl Integer for $t {
623            #[inline(always)]
624            fn read<const BITS: u32, R: BitRead + ?Sized>(reader: &mut R) -> io::Result<Self>
625            where
626                Self: Sized,
627            {
628                reader.read_unsigned::<BITS, _>()
629            }
630
631            #[inline(always)]
632            fn read_var<const MAX: u32, R>(reader: &mut R, bits: BitCount<MAX>) -> io::Result<Self>
633            where
634                R: BitRead + ?Sized,
635                Self: Sized,
636            {
637                reader.read_unsigned_counted::<MAX, _>(bits)
638            }
639
640            #[inline(always)]
641            fn write<const BITS: u32, W: BitWrite + ?Sized>(
642                self,
643                writer: &mut W,
644            ) -> io::Result<()> {
645                writer.write_unsigned::<BITS, _>(self)
646            }
647
648            #[inline(always)]
649            fn write_var<const MAX: u32, W: BitWrite + ?Sized>(
650                self,
651                writer: &mut W,
652                bits: BitCount<MAX>,
653            ) -> io::Result<()> {
654                writer.write_unsigned_counted(bits, self)
655            }
656        }
657
658        /// Unsigned NonZero types increment their value by 1
659        /// when being read and decrement it by 1
660        /// when being written.
661        ///
662        /// # Examples
663        /// ```
664        /// use bitstream_io::{BitReader, BitRead, BigEndian};
665        /// use core::num::NonZero;
666        ///
667        /// let data: &[u8] = &[0b001_00000];
668        /// // reading a regular u8 in 3 bits yields 1
669        /// assert_eq!(BitReader::endian(data, BigEndian).read::<3, u8>().unwrap(), 1);
670        /// // reading a NonZero<u8> in 3 bits of the same data yields 2
671        /// assert_eq!(BitReader::endian(data, BigEndian).read::<3, NonZero<u8>>().unwrap().get(), 2);
672        /// ```
673        ///
674        /// ```
675        /// use bitstream_io::{BitWriter, BitWrite, BigEndian};
676        /// use core::num::NonZero;
677        ///
678        /// let mut w = BitWriter::endian(vec![], BigEndian);
679        /// // writing 1 as a regular u8 in 3 bits
680        /// w.write::<3, u8>(1).unwrap();
681        /// w.byte_align();
682        /// assert_eq!(w.into_writer(), &[0b001_00000]);
683        ///
684        /// let mut w = BitWriter::endian(vec![], BigEndian);
685        /// // writing 1 as a NonZero<u8> in 3 bits
686        /// w.write::<3, NonZero<u8>>(NonZero::new(1).unwrap()).unwrap();
687        /// w.byte_align();
688        /// assert_eq!(w.into_writer(), &[0b000_00000]);
689        /// ```
690        impl Integer for NonZero<$t> {
691            #[inline]
692            fn read<const BITS: u32, R: BitRead + ?Sized>(reader: &mut R) -> io::Result<Self>
693            where
694                Self: Sized,
695            {
696                const {
697                    assert!(
698                        BITS < <$t>::BITS_SIZE,
699                        "BITS must be less than the type's size in bits"
700                    );
701                }
702
703                <$t as Integer>::read::<BITS, R>(reader).map(|u| NonZero::new(u + 1).unwrap())
704            }
705
706            #[inline]
707            fn read_var<const MAX: u32, R>(
708                reader: &mut R,
709                count @ BitCount { bits }: BitCount<MAX>,
710            ) -> io::Result<Self>
711            where
712                R: BitRead + ?Sized,
713                Self: Sized,
714            {
715                if MAX < <$t>::BITS_SIZE || bits < <$t>::BITS_SIZE {
716                    <$t as Integer>::read_var::<MAX, R>(reader, count)
717                        .map(|u| NonZero::new(u + 1).unwrap())
718                } else {
719                    Err(io::Error::new(
720                        io::ErrorKind::InvalidInput,
721                        "bit count must be less than the type's size in bits",
722                    ))
723                }
724            }
725
726            #[inline]
727            fn write<const BITS: u32, W: BitWrite + ?Sized>(
728                self,
729                writer: &mut W,
730            ) -> io::Result<()> {
731                const {
732                    assert!(
733                        BITS < <$t>::BITS_SIZE,
734                        "BITS must be less than the type's size in bits"
735                    );
736                }
737
738                <$t as Integer>::write::<BITS, W>(self.get() - 1, writer)
739            }
740
741            #[inline]
742            fn write_var<const MAX: u32, W: BitWrite + ?Sized>(
743                self,
744                writer: &mut W,
745                count @ BitCount { bits }: BitCount<MAX>,
746            ) -> io::Result<()> {
747                if MAX < <$t>::BITS_SIZE || bits < <$t>::BITS_SIZE {
748                    <$t as Integer>::write_var::<MAX, W>(self.get() - 1, writer, count)
749                } else {
750                    Err(io::Error::new(
751                        io::ErrorKind::InvalidInput,
752                        "bit count must be less than the type's size in bits",
753                    ))
754                }
755            }
756        }
757
758        impl Integer for Option<NonZero<$t>> {
759            #[inline]
760            fn read<const BITS: u32, R: BitRead + ?Sized>(reader: &mut R) -> io::Result<Self>
761            where
762                Self: Sized,
763            {
764                <$t as Integer>::read::<BITS, R>(reader).map(NonZero::new)
765            }
766
767            #[inline]
768            fn read_var<const MAX: u32, R>(reader: &mut R, count: BitCount<MAX>) -> io::Result<Self>
769            where
770                R: BitRead + ?Sized,
771                Self: Sized,
772            {
773                <$t as Integer>::read_var::<MAX, R>(reader, count).map(NonZero::new)
774            }
775
776            #[inline]
777            fn write<const BITS: u32, W: BitWrite + ?Sized>(
778                self,
779                writer: &mut W,
780            ) -> io::Result<()> {
781                <$t as Integer>::write::<BITS, W>(self.map(|n| n.get()).unwrap_or(0), writer)
782            }
783
784            #[inline]
785            fn write_var<const MAX: u32, W: BitWrite + ?Sized>(
786                self,
787                writer: &mut W,
788                count: BitCount<MAX>,
789            ) -> io::Result<()> {
790                <$t as Integer>::write_var::<MAX, W>(
791                    self.map(|n| n.get()).unwrap_or(0),
792                    writer,
793                    count,
794                )
795            }
796        }
797    };
798}
799
800/// This trait extends many common signed integer types
801/// so that they can be used with the bitstream handling traits.
802///
803/// This trait was formerly named `SignedNumeric` in 2.X.X code.
804/// If backwards-compatibility is needed one can
805/// import `SignedInteger` as `SignedNumeric`.
806pub trait SignedInteger: Numeric {
807    /// The unsigned variant of ourself
808    type Unsigned: UnsignedInteger<Signed = Self>;
809
810    /// Returns true if this value is negative
811    ///
812    /// # Example
813    /// ```
814    /// use bitstream_io::SignedInteger;
815    /// assert!(!1i8.is_negative());
816    /// assert!((-1i8).is_negative());
817    /// ```
818    fn is_negative(self) -> bool;
819
820    /// Returns ourself as a non-negative value.
821    /// The location of the sign bit depends on the stream's endianness
822    /// and is not stored in the result.
823    ///
824    /// # Example
825    /// ```
826    /// use bitstream_io::SignedInteger;
827    /// assert_eq!(1i8.as_non_negative(), 0b00000001u8);
828    /// ```
829    fn as_non_negative(self) -> Self::Unsigned;
830
831    /// Given a negative value and a certain number of bits,
832    /// returns this value as a twos-complement positive number.
833    /// The location of the sign bit depends on the stream's endianness
834    /// and is not stored in the result.
835    ///
836    /// # Example
837    /// ```
838    /// use bitstream_io::SignedInteger;
839    /// assert_eq!((-1i8).as_negative(8), 0b01111111u8);
840    /// ```
841    fn as_negative(self, bits: u32) -> Self::Unsigned;
842
843    /// Given a negative value and a certain number of bits,
844    /// returns this value as a twos-complement positive number.
845    ///
846    /// # Example
847    /// ```
848    /// use bitstream_io::SignedInteger;
849    /// assert_eq!((-1i8).as_negative_fixed::<8>(), 0b01111111u8);
850    /// ```
851    fn as_negative_fixed<const BITS: u32>(self) -> Self::Unsigned;
852}
853
854macro_rules! define_signed_integer {
855    ($t:ty, $u:ty) => {
856        define_numeric!($t);
857
858        impl SignedInteger for $t {
859            type Unsigned = $u;
860
861            #[inline(always)]
862            fn is_negative(self) -> bool {
863                self.is_negative()
864            }
865            fn as_non_negative(self) -> Self::Unsigned {
866                self as $u
867            }
868            fn as_negative(self, bits: u32) -> Self::Unsigned {
869                (self - (-1 << (bits - 1))) as $u
870            }
871            fn as_negative_fixed<const BITS: u32>(self) -> Self::Unsigned {
872                (self - (-1 << (BITS - 1))) as $u
873            }
874        }
875
876        impl Integer for $t {
877            #[inline(always)]
878            fn read<const BITS: u32, R: BitRead + ?Sized>(reader: &mut R) -> io::Result<Self>
879            where
880                Self: Sized,
881            {
882                reader.read_signed::<BITS, _>()
883            }
884
885            #[inline(always)]
886            fn read_var<const MAX: u32, R>(reader: &mut R, bits: BitCount<MAX>) -> io::Result<Self>
887            where
888                R: BitRead + ?Sized,
889                Self: Sized,
890            {
891                reader.read_signed_counted::<MAX, _>(bits)
892            }
893
894            #[inline(always)]
895            fn write<const BITS: u32, W: BitWrite + ?Sized>(
896                self,
897                writer: &mut W,
898            ) -> io::Result<()> {
899                writer.write_signed::<BITS, _>(self)
900            }
901
902            #[inline(always)]
903            fn write_var<const MAX: u32, W: BitWrite + ?Sized>(
904                self,
905                writer: &mut W,
906                bits: BitCount<MAX>,
907            ) -> io::Result<()> {
908                writer.write_signed_counted::<MAX, _>(bits, self)
909            }
910        }
911    };
912}
913
914define_unsigned_integer!(u8, i8);
915define_unsigned_integer!(u16, i16);
916define_unsigned_integer!(u32, i32);
917define_unsigned_integer!(u64, i64);
918define_unsigned_integer!(u128, i128);
919
920define_signed_integer!(i8, u8);
921define_signed_integer!(i16, u16);
922define_signed_integer!(i32, u32);
923define_signed_integer!(i64, u64);
924define_signed_integer!(i128, u128);
925
926define_primitive_numeric!(f32);
927define_primitive_numeric!(f64);
928
929mod private {
930    use crate::{
931        io, BitCount, BitRead, BitWrite, CheckedSigned, CheckedUnsigned, Primitive, SignedBitCount,
932        SignedInteger, UnsignedInteger,
933    };
934
935    #[test]
936    fn test_checked_signed() {
937        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<8>(), -128i8).is_ok());
938        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<8>(), 127i8).is_ok());
939        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<7>(), -64i8).is_ok());
940        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<7>(), 63i8).is_ok());
941        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<6>(), -32i8).is_ok());
942        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<6>(), 31i8).is_ok());
943        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<5>(), -16i8).is_ok());
944        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<5>(), 15i8).is_ok());
945        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<4>(), -8i8).is_ok());
946        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<4>(), 7i8).is_ok());
947        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<3>(), -4i8).is_ok());
948        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<3>(), 3i8).is_ok());
949        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<2>(), -2i8).is_ok());
950        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<2>(), 1i8).is_ok());
951        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<1>(), -1i8).is_ok());
952        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<1>(), 0i8).is_ok());
953
954        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<7>(), -65i8).is_err());
955        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<7>(), 64i8).is_err());
956        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<6>(), -33i8).is_err());
957        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<6>(), 32i8).is_err());
958        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<5>(), -17i8).is_err());
959        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<5>(), 16i8).is_err());
960        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<4>(), -9i8).is_err());
961        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<4>(), 8i8).is_err());
962        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<3>(), -5i8).is_err());
963        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<3>(), 4i8).is_err());
964        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<2>(), -3i8).is_err());
965        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<2>(), 2i8).is_err());
966        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<1>(), -2i8).is_err());
967        assert!(CheckedSigned::new(SignedBitCount::<8>::new::<1>(), 1i8).is_err());
968    }
969
970    pub trait Endianness: Sized {
971        /// Pops the next bit from the queue,
972        /// repleneshing it from the given reader if necessary
973        fn pop_bit_refill<R>(
974            reader: &mut R,
975            queue_value: &mut u8,
976            queue_bits: &mut u32,
977        ) -> io::Result<bool>
978        where
979            R: io::Read;
980
981        /// Pops the next unary value from the source until
982        /// `STOP_BIT` is encountered, replenishing it from the given
983        /// closure if necessary.
984        ///
985        /// `STOP_BIT` must be 0 or 1.
986        fn pop_unary<const STOP_BIT: u8, R>(
987            reader: &mut R,
988            queue_value: &mut u8,
989            queue_bits: &mut u32,
990        ) -> io::Result<u32>
991        where
992            R: io::Read;
993
994        /// Pushes the next bit into the queue,
995        /// and returns `Some` value if the queue is full.
996        fn push_bit_flush(queue_value: &mut u8, queue_bits: &mut u32, bit: bool) -> Option<u8>;
997
998        /// For performing bulk reads from a bit source to an output type.
999        fn read_bits<const MAX: u32, R, U>(
1000            reader: &mut R,
1001            queue_value: &mut u8,
1002            queue_bits: &mut u32,
1003            count: BitCount<MAX>,
1004        ) -> io::Result<U>
1005        where
1006            R: io::Read,
1007            U: UnsignedInteger;
1008
1009        /// For performing bulk reads from a bit source to an output type.
1010        fn read_bits_fixed<const BITS: u32, R, U>(
1011            reader: &mut R,
1012            queue_value: &mut u8,
1013            queue_bits: &mut u32,
1014        ) -> io::Result<U>
1015        where
1016            R: io::Read,
1017            U: UnsignedInteger;
1018
1019        /// For performing a checked write to a bit sink
1020        fn write_bits_checked<const MAX: u32, W, U>(
1021            writer: &mut W,
1022            queue_value: &mut u8,
1023            queue_bits: &mut u32,
1024            value: CheckedUnsigned<MAX, U>,
1025        ) -> io::Result<()>
1026        where
1027            W: io::Write,
1028            U: UnsignedInteger;
1029
1030        /// For performing a checked signed write to a bit sink
1031        fn write_signed_bits_checked<const MAX: u32, W, S>(
1032            writer: &mut W,
1033            queue_value: &mut u8,
1034            queue_bits: &mut u32,
1035            value: CheckedSigned<MAX, S>,
1036        ) -> io::Result<()>
1037        where
1038            W: io::Write,
1039            S: SignedInteger;
1040
1041        /// Reads signed value from reader in this endianness
1042        fn read_signed_counted<const MAX: u32, R, S>(
1043            r: &mut R,
1044            bits: SignedBitCount<MAX>,
1045        ) -> io::Result<S>
1046        where
1047            R: BitRead,
1048            S: SignedInteger;
1049
1050        /// Reads whole set of bytes to output buffer
1051        fn read_bytes<const CHUNK_SIZE: usize, R>(
1052            reader: &mut R,
1053            queue_value: &mut u8,
1054            queue_bits: u32,
1055            buf: &mut [u8],
1056        ) -> io::Result<()>
1057        where
1058            R: io::Read;
1059
1060        /// Writes whole set of bytes to output buffer
1061        fn write_bytes<const CHUNK_SIZE: usize, W>(
1062            writer: &mut W,
1063            queue_value: &mut u8,
1064            queue_bits: u32,
1065            buf: &[u8],
1066        ) -> io::Result<()>
1067        where
1068            W: io::Write;
1069
1070        /// Converts a primitive's byte buffer to a primitive
1071        fn bytes_to_primitive<P: Primitive>(buf: P::Bytes) -> P;
1072
1073        /// Converts a primitive to a primitive's byte buffer
1074        fn primitive_to_bytes<P: Primitive>(p: P) -> P::Bytes;
1075
1076        /// Reads convertable numeric value from reader in this endianness
1077        #[deprecated(since = "4.0.0")]
1078        fn read_primitive<R, V>(r: &mut R) -> io::Result<V>
1079        where
1080            R: BitRead,
1081            V: Primitive;
1082
1083        /// Writes convertable numeric value to writer in this endianness
1084        #[deprecated(since = "4.0.0")]
1085        fn write_primitive<W, V>(w: &mut W, value: V) -> io::Result<()>
1086        where
1087            W: BitWrite,
1088            V: Primitive;
1089    }
1090
1091    pub trait Checkable {
1092        fn write_endian<E, W>(
1093            self,
1094            writer: &mut W,
1095            queue_value: &mut u8,
1096            queue_bits: &mut u32,
1097        ) -> io::Result<()>
1098        where
1099            E: Endianness,
1100            W: io::Write;
1101    }
1102}
1103
1104/// A stream's endianness, or byte order, for determining
1105/// how bits should be read.
1106///
1107/// It comes in `BigEndian` and `LittleEndian` varieties
1108/// (which may be shortened to `BE` and `LE`)
1109/// and is not something programmers should implement directly.
1110pub trait Endianness: private::Endianness {}
1111
1112#[inline(always)]
1113fn read_byte<R>(mut reader: R) -> io::Result<u8>
1114where
1115    R: io::Read,
1116{
1117    let mut byte = 0;
1118    reader
1119        .read_exact(core::slice::from_mut(&mut byte))
1120        .map(|()| byte)
1121}
1122
1123#[inline(always)]
1124fn write_byte<W>(mut writer: W, byte: u8) -> io::Result<()>
1125where
1126    W: io::Write,
1127{
1128    writer.write_all(core::slice::from_ref(&byte))
1129}
1130
1131/// A number of bits to be consumed or written, with a known maximum
1132///
1133/// Although [`BitRead::read`] and [`BitWrite::write`] should be
1134/// preferred when the number of bits is fixed and known at compile-time -
1135/// because they can validate the bit count is less than or equal
1136/// to the type's size in bits at compile-time -
1137/// there are many instances where bit count is dynamic and
1138/// determined by the file format itself.
1139/// But when using [`BitRead::read_var`] or [`BitWrite::write_var`]
1140/// we must pessimistically assume any number of bits as an argument
1141/// and validate that the number of bits is not larger than the
1142/// type being read or written on every call.
1143///
1144/// ```
1145/// use bitstream_io::{BitRead, BitReader, BigEndian};
1146///
1147/// let data: &[u8] = &[0b100_0001_1, 0b111_0110_0];
1148/// let mut r = BitReader::endian(data, BigEndian);
1149/// // our bit count is a 3 bit value
1150/// let count = r.read::<3, u32>().unwrap();
1151/// // that count indicates we need to read 4 bits (0b100)
1152/// assert_eq!(count, 4);
1153/// // read the first 4-bit value
1154/// assert_eq!(r.read_var::<u8>(count).unwrap(), 0b0001);
1155/// // read the second 4-bit value
1156/// assert_eq!(r.read_var::<u8>(count).unwrap(), 0b1111);
1157/// // read the third 4-bit value
1158/// assert_eq!(r.read_var::<u8>(count).unwrap(), 0b0110);
1159/// ```
1160///
1161/// In the preceding example, even though we know `count` is a
1162/// 3 bit value whose maximum value will never be greater than 7,
1163/// the subsequent `read_var` calls have no way to know that.
1164/// They must assume `count` could be 9, or `u32::MAX` or any other `u32` value
1165/// and validate the count is not larger than the `u8` types we're reading.
1166///
1167/// But we can convert our example to use the `BitCount` type:
1168///
1169/// ```
1170/// use bitstream_io::{BitRead, BitReader, BigEndian, BitCount};
1171///
1172/// let data: &[u8] = &[0b100_0001_1, 0b111_0110_0];
1173/// let mut r = BitReader::endian(data, BigEndian);
1174/// // our bit count is a 3 bit value with a maximum value of 7
1175/// let count = r.read_count::<0b111>().unwrap();
1176/// // that count indicates we need to read 4 bits (0b100)
1177/// assert_eq!(count, BitCount::<7>::new::<4>());
1178/// // read the first 4-bit value
1179/// assert_eq!(r.read_counted::<7, u8>(count).unwrap(), 0b0001);
1180/// // read the second 4-bit value
1181/// assert_eq!(r.read_counted::<7, u8>(count).unwrap(), 0b1111);
1182/// // read the third 4-bit value
1183/// assert_eq!(r.read_counted::<7, u8>(count).unwrap(), 0b0110);
1184/// ```
1185///
1186/// Because the [`BitRead::read_counted`] methods know at compile-time
1187/// that the bit count will be larger than 7, that check can be eliminated
1188/// simply by taking advantage of information we already know.
1189///
1190/// Leveraging the `BitCount` type also allows us to reason about
1191/// bit counts in a more formal way, and use checked permutation methods
1192/// to modify them while ensuring they remain constrained by
1193/// the file format's requirements.
1194#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
1195pub struct BitCount<const MAX: u32> {
1196    // The amount of bits may be less than or equal to the maximum,
1197    // but never more.
1198    bits: u32,
1199}
1200
1201impl<const MAX: u32> BitCount<MAX> {
1202    /// Builds a bit count from a constant number
1203    /// of bits, which must not be greater than `MAX`.
1204    ///
1205    /// Intended to be used for defining constants.
1206    ///
1207    /// Use `TryFrom` to conditionally build
1208    /// counts from values at runtime.
1209    ///
1210    /// # Examples
1211    ///
1212    /// ```
1213    /// use bitstream_io::{BitReader, BitRead, BigEndian, BitCount};
1214    /// let data: &[u8] = &[0b111_00000];
1215    /// let mut r = BitReader::endian(data, BigEndian);
1216    /// // reading 3 bits from a stream out of a maximum of 8
1217    /// // doesn't require checking that the bit count is larger
1218    /// // than a u8 at runtime because specifying the maximum of 8
1219    /// // guarantees our bit count will not be larger than 8
1220    /// assert_eq!(r.read_counted::<8, u8>(BitCount::new::<3>()).unwrap(), 0b111);
1221    /// ```
1222    ///
1223    /// ```rust,compile_fail
1224    /// use bitstream_io::BitCount;
1225    /// // trying to build a count of 10 with a maximum of 8
1226    /// // fails to compile at all
1227    /// let count = BitCount::<8>::new::<10>();
1228    /// ```
1229    pub const fn new<const BITS: u32>() -> Self {
1230        const {
1231            assert!(BITS <= MAX, "BITS must be <= MAX");
1232        }
1233
1234        Self { bits: BITS }
1235    }
1236
1237    /// Add a number of bits to our count,
1238    /// returning a new count with a new maximum.
1239    ///
1240    /// Returns `None` if the new count goes above our new maximum.
1241    ///
1242    /// # Examples
1243    ///
1244    /// ```
1245    /// use bitstream_io::BitCount;
1246    ///
1247    /// let count = BitCount::<2>::new::<1>();
1248    /// // adding 2 to 1 and increasing the max to 3 yields a new count of 3
1249    /// assert_eq!(count.checked_add::<3>(2), Some(BitCount::<3>::new::<3>()));
1250    /// // adding 2 to 1 without increasing the max yields None
1251    /// assert_eq!(count.checked_add::<2>(2), None);
1252    /// ```
1253    #[inline]
1254    pub const fn checked_add<const NEW_MAX: u32>(self, bits: u32) -> Option<BitCount<NEW_MAX>> {
1255        match self.bits.checked_add(bits) {
1256            Some(bits) if bits <= NEW_MAX => Some(BitCount { bits }),
1257            _ => None,
1258        }
1259    }
1260
1261    /// Subtracts a number of bits from our count,
1262    /// returning a new count with a new maximum.
1263    ///
1264    /// Returns `None` if the new count goes below 0
1265    /// or below our new maximum.
1266    ///
1267    /// # Example
1268    /// ```
1269    /// use bitstream_io::BitCount;
1270    /// let count = BitCount::<5>::new::<5>();
1271    /// // subtracting 1 from 5 yields a new count of 4
1272    /// assert_eq!(count.checked_sub::<5>(1), Some(BitCount::<5>::new::<4>()));
1273    /// // subtracting 6 from 5 yields None
1274    /// assert!(count.checked_sub::<5>(6).is_none());
1275    /// // subtracting 1 with a new maximum of 3 also yields None
1276    /// // because 4 is larger than the maximum of 3
1277    /// assert!(count.checked_sub::<3>(1).is_none());
1278    /// ```
1279    #[inline]
1280    pub const fn checked_sub<const NEW_MAX: u32>(self, bits: u32) -> Option<BitCount<NEW_MAX>> {
1281        match self.bits.checked_sub(bits) {
1282            Some(bits) if bits <= NEW_MAX => Some(BitCount { bits }),
1283            _ => None,
1284        }
1285    }
1286
1287    /// Attempt to convert our count to a count with a new
1288    /// bit count and new maximum.
1289    ///
1290    /// Returns `Some(count)` if the updated number of bits
1291    /// is less than or equal to the new maximum.
1292    /// Returns `None` if not.
1293    ///
1294    /// # Examples
1295    /// ```
1296    /// use bitstream_io::BitCount;
1297    ///
1298    /// let count = BitCount::<5>::new::<5>();
1299    /// // muliplying 5 bits by 2 with a new max of 10 is ok
1300    /// assert_eq!(
1301    ///     count.try_map::<10, _>(|i| i.checked_mul(2)),
1302    ///     Some(BitCount::<10>::new::<10>()),
1303    /// );
1304    ///
1305    /// // multiplying 5 bits by 3 with a new max of 10 overflows
1306    /// assert_eq!(count.try_map::<10, _>(|i| i.checked_mul(3)), None);
1307    /// ```
1308    #[inline]
1309    pub fn try_map<const NEW_MAX: u32, F>(self, f: F) -> Option<BitCount<NEW_MAX>>
1310    where
1311        F: FnOnce(u32) -> Option<u32>,
1312    {
1313        f(self.bits)
1314            .filter(|bits| *bits <= NEW_MAX)
1315            .map(|bits| BitCount { bits })
1316    }
1317
1318    /// Returns our maximum bit count
1319    ///
1320    /// # Example
1321    /// ```
1322    /// use bitstream_io::BitCount;
1323    ///
1324    /// let count = BitCount::<10>::new::<5>();
1325    /// assert_eq!(count.max(), 10);
1326    /// ```
1327    #[inline(always)]
1328    pub const fn max(&self) -> u32 {
1329        MAX
1330    }
1331
1332    /// Returns signed count if our bit count is greater than 0
1333    ///
1334    /// # Example
1335    ///
1336    /// ```
1337    /// use bitstream_io::{BitCount, SignedBitCount};
1338    ///
1339    /// let count = BitCount::<10>::new::<5>();
1340    /// assert_eq!(count.signed_count(), Some(SignedBitCount::<10>::new::<5>()));
1341    ///
1342    /// let count = BitCount::<10>::new::<0>();
1343    /// assert_eq!(count.signed_count(), None);
1344    /// ```
1345    #[inline(always)]
1346    pub const fn signed_count(&self) -> Option<SignedBitCount<MAX>> {
1347        match self.bits.checked_sub(1) {
1348            Some(bits) => Some(SignedBitCount {
1349                bits: *self,
1350                unsigned: BitCount { bits },
1351            }),
1352            None => None,
1353        }
1354    }
1355
1356    /// Masks off the least-significant bits for the given type
1357    ///
1358    /// Returns closure that takes a value and returns a
1359    /// pair of the most-significant and least-significant
1360    /// bits.  Because the least-significant bits cannot
1361    /// be larger than this bit count, that value is
1362    /// returned as a [`Checked`] type.
1363    ///
1364    /// # Examples
1365    ///
1366    /// ```
1367    /// use bitstream_io::BitCount;
1368    ///
1369    /// // create a bit count of 3
1370    /// let count = BitCount::<8>::new::<3>();
1371    ///
1372    /// // create a mask suitable for u8 types
1373    /// let mask = count.mask_lsb::<u8>();
1374    ///
1375    /// let (msb, lsb) = mask(0b11011_110);
1376    /// assert_eq!(msb, 0b11011);             // the most-significant bits
1377    /// assert_eq!(lsb.into_value(), 0b110);  // the least-significant bits
1378    ///
1379    /// let (msb, lsb) = mask(0b01100_010);
1380    /// assert_eq!(msb, 0b01100);             // the most-significant bits
1381    /// assert_eq!(lsb.into_value(), 0b010);  // the least-significant bits
1382    ///
1383    /// let (msb, lsb) = mask(0b00000_111);
1384    /// assert_eq!(msb, 0b00000);             // the most-significant bits
1385    /// assert_eq!(lsb.into_value(), 0b111);  // the least-significant bits
1386    /// ```
1387    ///
1388    /// ```
1389    /// use bitstream_io::BitCount;
1390    ///
1391    /// // a mask with a bit count of 0 puts everything in msb
1392    /// let mask = BitCount::<8>::new::<0>().mask_lsb::<u8>();
1393    ///
1394    /// let (msb, lsb) = mask(0b11111111);
1395    /// assert_eq!(msb, 0b11111111);
1396    /// assert_eq!(lsb.into_value(), 0);
1397    ///
1398    /// // a mask with a bit count larger than the type
1399    /// // is restricted to that type's size, if possible
1400    /// let mask = BitCount::<16>::new::<9>().mask_lsb::<u8>();
1401    ///
1402    /// let (msb, lsb) = mask(0b11111111);
1403    /// assert_eq!(msb, 0);
1404    /// assert_eq!(lsb.into_value(), 0b11111111);
1405    /// ```
1406    pub fn mask_lsb<U: UnsignedInteger>(self) -> impl Fn(U) -> (U, CheckedUnsigned<MAX, U>) {
1407        use core::convert::TryFrom;
1408
1409        let (mask, shift, count) = match U::BITS_SIZE.checked_sub(self.bits) {
1410            Some(mask_bits) => (U::ALL.shr_default(mask_bits), self.bits, self),
1411            None => (
1412                U::ALL,
1413                U::BITS_SIZE,
1414                BitCount::try_from(U::BITS_SIZE).expect("bit count too small for type"),
1415            ),
1416        };
1417
1418        move |v| {
1419            (
1420                v.shr_default(shift),
1421                Checked {
1422                    value: v & mask,
1423                    count,
1424                },
1425            )
1426        }
1427    }
1428
1429    /// Returns this bit count's range for the given unsigned type
1430    ///
1431    /// # Example
1432    ///
1433    /// ```
1434    /// use bitstream_io::BitCount;
1435    ///
1436    /// assert_eq!(BitCount::<9>::new::<0>().range::<u8>(), 0..=0);
1437    /// assert_eq!(BitCount::<9>::new::<1>().range::<u8>(), 0..=0b1);
1438    /// assert_eq!(BitCount::<9>::new::<2>().range::<u8>(), 0..=0b11);
1439    /// assert_eq!(BitCount::<9>::new::<3>().range::<u8>(), 0..=0b111);
1440    /// assert_eq!(BitCount::<9>::new::<4>().range::<u8>(), 0..=0b1111);
1441    /// assert_eq!(BitCount::<9>::new::<5>().range::<u8>(), 0..=0b11111);
1442    /// assert_eq!(BitCount::<9>::new::<6>().range::<u8>(), 0..=0b111111);
1443    /// assert_eq!(BitCount::<9>::new::<7>().range::<u8>(), 0..=0b1111111);
1444    /// assert_eq!(BitCount::<9>::new::<8>().range::<u8>(), 0..=0b11111111);
1445    /// // a count that exceeds the type's size is
1446    /// // naturally restricted to that type's maximum range
1447    /// assert_eq!(BitCount::<9>::new::<9>().range::<u8>(), 0..=0b11111111);
1448    /// ```
1449    #[inline]
1450    pub fn range<U: UnsignedInteger>(&self) -> core::ops::RangeInclusive<U> {
1451        match U::ONE.checked_shl(self.bits) {
1452            Some(top) => U::ZERO..=(top - U::ONE),
1453            None => U::ZERO..=U::ALL,
1454        }
1455    }
1456
1457    /// Returns minimum value between ourself and bit count
1458    ///
1459    /// # Example
1460    ///
1461    /// ```
1462    /// use bitstream_io::BitCount;
1463    ///
1464    /// let count = BitCount::<8>::new::<7>();
1465    /// assert_eq!(count.min(6), BitCount::new::<6>());
1466    /// assert_eq!(count.min(8), BitCount::new::<7>());
1467    /// ```
1468    #[inline(always)]
1469    pub fn min(self, bits: u32) -> Self {
1470        // the minimum of ourself and another bit count
1471        // can never exceed our maximum bit count
1472        Self {
1473            bits: self.bits.min(bits),
1474        }
1475    }
1476
1477    /// Returns the minimum value of an unsigned int in this bit count
1478    ///
1479    /// # Example
1480    ///
1481    /// ```
1482    /// use bitstream_io::BitCount;
1483    ///
1484    /// assert_eq!(BitCount::<8>::new::<0>().none::<u8>().into_value(), 0b0);
1485    /// assert_eq!(BitCount::<8>::new::<1>().none::<u8>().into_value(), 0b0);
1486    /// assert_eq!(BitCount::<8>::new::<2>().none::<u8>().into_value(), 0b00);
1487    /// assert_eq!(BitCount::<8>::new::<3>().none::<u8>().into_value(), 0b000);
1488    /// assert_eq!(BitCount::<8>::new::<4>().none::<u8>().into_value(), 0b0000);
1489    /// assert_eq!(BitCount::<8>::new::<5>().none::<u8>().into_value(), 0b00000);
1490    /// assert_eq!(BitCount::<8>::new::<6>().none::<u8>().into_value(), 0b000000);
1491    /// assert_eq!(BitCount::<8>::new::<7>().none::<u8>().into_value(), 0b0000000);
1492    /// assert_eq!(BitCount::<8>::new::<8>().none::<u8>().into_value(), 0b00000000);
1493    /// ```
1494    #[inline(always)]
1495    pub fn none<U: UnsignedInteger>(self) -> CheckedUnsigned<MAX, U> {
1496        CheckedUnsigned {
1497            value: U::ZERO,
1498            count: self,
1499        }
1500    }
1501
1502    /// Returns the maximim value of an unsigned int in this bit count
1503    ///
1504    /// # Example
1505    ///
1506    /// ```
1507    /// use bitstream_io::BitCount;
1508    ///
1509    /// assert_eq!(BitCount::<8>::new::<0>().all::<u8>().into_value(), 0b0);
1510    /// assert_eq!(BitCount::<8>::new::<1>().all::<u8>().into_value(), 0b1);
1511    /// assert_eq!(BitCount::<8>::new::<2>().all::<u8>().into_value(), 0b11);
1512    /// assert_eq!(BitCount::<8>::new::<3>().all::<u8>().into_value(), 0b111);
1513    /// assert_eq!(BitCount::<8>::new::<4>().all::<u8>().into_value(), 0b1111);
1514    /// assert_eq!(BitCount::<8>::new::<5>().all::<u8>().into_value(), 0b11111);
1515    /// assert_eq!(BitCount::<8>::new::<6>().all::<u8>().into_value(), 0b111111);
1516    /// assert_eq!(BitCount::<8>::new::<7>().all::<u8>().into_value(), 0b1111111);
1517    /// assert_eq!(BitCount::<8>::new::<8>().all::<u8>().into_value(), 0b11111111);
1518    /// ```
1519    #[inline(always)]
1520    pub fn all<U: UnsignedInteger>(self) -> CheckedUnsigned<MAX, U> {
1521        CheckedUnsigned {
1522            value: match U::ONE.checked_shl(self.bits) {
1523                Some(top) => top - U::ONE,
1524                None => U::ALL,
1525            },
1526            count: self,
1527        }
1528    }
1529}
1530
1531impl<const MAX: u32> core::convert::TryFrom<u32> for BitCount<MAX> {
1532    type Error = u32;
1533
1534    /// Attempts to convert a `u32` bit count to a `BitCount`
1535    ///
1536    /// Attempting a bit maximum bit count larger than the
1537    /// largest supported type is a compile-time error
1538    ///
1539    /// # Examples
1540    /// ```
1541    /// use bitstream_io::BitCount;
1542    /// use std::convert::TryInto;
1543    ///
1544    /// assert_eq!(8u32.try_into(), Ok(BitCount::<8>::new::<8>()));
1545    /// assert_eq!(9u32.try_into(), Err::<BitCount<8>, _>(9));
1546    /// ```
1547    fn try_from(bits: u32) -> Result<Self, Self::Error> {
1548        (bits <= MAX).then_some(Self { bits }).ok_or(bits)
1549    }
1550}
1551
1552impl BitCount<{ u32::MAX }> {
1553    /// Builds a bit count where the maximum bits is unknown.
1554    ///
1555    /// # Example
1556    /// ```
1557    /// use bitstream_io::BitCount;
1558    /// assert_eq!(BitCount::unknown(5), BitCount::<{ u32::MAX }>::new::<5>());
1559    /// ```
1560    pub const fn unknown(bits: u32) -> Self {
1561        Self { bits }
1562    }
1563}
1564
1565#[test]
1566fn test_unknown_bitcount() {
1567    let count = BitCount::unknown(u32::MAX);
1568    assert!(u32::from(count) <= count.max());
1569}
1570
1571impl<const MAX: u32> From<BitCount<MAX>> for u32 {
1572    #[inline(always)]
1573    fn from(BitCount { bits }: BitCount<MAX>) -> u32 {
1574        bits
1575    }
1576}
1577
1578/// A number of bits to be read or written for signed integers, with a known maximum
1579///
1580/// This is closely related to the [`BitCount`] type, but further constrained
1581/// to have a minimum value of 1 - because signed values require at least
1582/// 1 bit for the sign.
1583///
1584/// Let's start with a basic example:
1585///
1586/// ```
1587/// use bitstream_io::{BitRead, BitReader, BigEndian};
1588///
1589/// let data: &[u8] = &[0b100_0001_1, 0b111_0110_0];
1590/// let mut r = BitReader::endian(data, BigEndian);
1591/// // our bit count is a 3 bit value
1592/// let count = r.read::<3, u32>().unwrap();
1593/// // that count indicates we need to read 4 bits (0b100)
1594/// assert_eq!(count, 4);
1595/// // read the first 4-bit signed value
1596/// assert_eq!(r.read_var::<i8>(count).unwrap(), 1);
1597/// // read the second 4-bit signed value
1598/// assert_eq!(r.read_var::<i8>(count).unwrap(), -1);
1599/// // read the third 4-bit signed value
1600/// assert_eq!(r.read_var::<i8>(count).unwrap(), 6);
1601/// ```
1602///
1603/// In the preceding example, even though we know `count` is a
1604/// 3 bit value whose maximum value will never be greater than 7,
1605/// the subsequent `read_var` calls have no way to know that.
1606/// They must assume `count` could be 9, or `u32::MAX` or any other `u32` value
1607/// and validate the count is not larger than the `i8` types we're reading
1608/// while also greater than 0 because `i8` requires a sign bit.
1609///
1610/// But we can convert our example to use the `SignedBitCount` type:
1611/// ```
1612/// use bitstream_io::{BitRead, BitReader, BigEndian, SignedBitCount};
1613///
1614/// let data: &[u8] = &[0b100_0001_1, 0b111_0110_0];
1615/// let mut r = BitReader::endian(data, BigEndian);
1616/// // our bit count is a 3 bit value with a maximum value of 7
1617/// let count = r.read_count::<0b111>().unwrap();
1618/// // convert that count to a signed bit count,
1619/// // which guarantees its value is greater than 0
1620/// let count = count.signed_count().unwrap();
1621/// // that count indicates we need to read 4 bits (0b100)
1622/// assert_eq!(count, SignedBitCount::<7>::new::<4>());
1623/// // read the first 4-bit value
1624/// assert_eq!(r.read_signed_counted::<7, i8>(count).unwrap(), 1);
1625/// // read the second 4-bit value
1626/// assert_eq!(r.read_signed_counted::<7, i8>(count).unwrap(), -1);
1627/// // read the third 4-bit value
1628/// assert_eq!(r.read_signed_counted::<7, i8>(count).unwrap(), 6);
1629/// ```
1630///
1631/// Because the [`BitRead::read_signed_counted`] methods know at compile-time
1632/// that the bit count will be larger than 7, that check can be eliminated
1633/// simply by taking advantage of information we already know.
1634///
1635/// Leveraging the `SignedBitCount` type also allows us to reason about
1636/// bit counts in a more formal way, and use checked permutation methods
1637/// to modify them while ensuring they remain constrained by
1638/// the file format's requirements.
1639#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
1640pub struct SignedBitCount<const MAX: u32> {
1641    // the whole original bit count
1642    bits: BitCount<MAX>,
1643    // a bit count with one bit removed for the sign
1644    unsigned: BitCount<MAX>,
1645}
1646
1647impl<const MAX: u32> SignedBitCount<MAX> {
1648    /// Builds a signed bit count from a constant number
1649    /// of bits, which must be greater than 0 and
1650    /// not be greater than `MAX`.
1651    ///
1652    /// Intended to be used for defining constants.
1653    ///
1654    /// Use `TryFrom` to conditionally build
1655    /// counts from values at runtime.
1656    ///
1657    /// # Examples
1658    ///
1659    /// ```
1660    /// use bitstream_io::{BitReader, BitRead, BigEndian, SignedBitCount};
1661    /// let data: &[u8] = &[0b111_00000];
1662    /// let mut r = BitReader::endian(data, BigEndian);
1663    /// // reading 3 bits from a stream out of a maximum of 8
1664    /// // doesn't require checking that the bit count is larger
1665    /// // than a u8 at runtime because specifying the maximum of 8
1666    /// // guarantees our bit count will not be larger than 8
1667    /// assert_eq!(r.read_signed_counted::<8, i8>(SignedBitCount::new::<3>()).unwrap(), -1);
1668    /// ```
1669    ///
1670    /// ```rust,compile_fail
1671    /// use bitstream_io::SignedBitCount;
1672    /// // trying to build a count of 10 with a maximum of 8
1673    /// // fails to compile at all
1674    /// let count = SignedBitCount::<8>::new::<10>();
1675    /// ```
1676    ///
1677    /// ```rust,compile_fail
1678    /// use bitstream_io::SignedBitCount;
1679    /// // trying to build a count of 0 also fails to compile
1680    /// let count = SignedBitCount::<8>::new::<0>();
1681    /// ```
1682    pub const fn new<const BITS: u32>() -> Self {
1683        const {
1684            assert!(BITS > 0, "BITS must be > 0");
1685        }
1686
1687        Self {
1688            bits: BitCount::new::<BITS>(),
1689            unsigned: BitCount { bits: BITS - 1 },
1690        }
1691    }
1692
1693    /// Add a number of bits to our count,
1694    /// returning a new count with a new maximum.
1695    ///
1696    /// Returns `None` if the new count goes above our new maximum.
1697    ///
1698    /// # Examples
1699    ///
1700    /// ```
1701    /// use bitstream_io::SignedBitCount;
1702    ///
1703    /// let count = SignedBitCount::<2>::new::<1>();
1704    /// // adding 2 to 1 and increasing the max to 3 yields a new count of 3
1705    /// assert_eq!(count.checked_add::<3>(2), Some(SignedBitCount::<3>::new::<3>()));
1706    /// // adding 2 to 1 without increasing the max yields None
1707    /// assert_eq!(count.checked_add::<2>(2), None);
1708    /// ```
1709    #[inline]
1710    pub const fn checked_add<const NEW_MAX: u32>(
1711        self,
1712        bits: u32,
1713    ) -> Option<SignedBitCount<NEW_MAX>> {
1714        match self.bits.checked_add(bits) {
1715            Some(bits_new) => match self.unsigned.checked_add(bits) {
1716                Some(unsigned) => Some(SignedBitCount {
1717                    bits: bits_new,
1718                    unsigned,
1719                }),
1720                None => None,
1721            },
1722            None => None,
1723        }
1724    }
1725
1726    /// Subtracts a number of bits from our count,
1727    /// returning a new count with a new maximum.
1728    ///
1729    /// Returns `None` if the new count goes below 1
1730    /// or below our new maximum.
1731    ///
1732    /// # Example
1733    /// ```
1734    /// use bitstream_io::SignedBitCount;
1735    /// let count = SignedBitCount::<5>::new::<5>();
1736    /// // subtracting 1 from 5 yields a new count of 4
1737    /// assert_eq!(count.checked_sub::<5>(1), Some(SignedBitCount::<5>::new::<4>()));
1738    /// // subtracting 6 from 5 yields None
1739    /// assert!(count.checked_sub::<5>(6).is_none());
1740    /// // subtracting 1 with a new maximum of 3 also yields None
1741    /// // because 4 is larger than the maximum of 3
1742    /// assert!(count.checked_sub::<3>(1).is_none());
1743    /// // subtracting 5 from 5 also yields None
1744    /// // because SignedBitCount always requires 1 bit for the sign
1745    /// assert!(count.checked_sub::<5>(5).is_none());
1746    /// ```
1747    #[inline]
1748    pub const fn checked_sub<const NEW_MAX: u32>(
1749        self,
1750        bits: u32,
1751    ) -> Option<SignedBitCount<NEW_MAX>> {
1752        match self.bits.checked_sub(bits) {
1753            Some(bits_new) => match self.unsigned.checked_sub(bits) {
1754                Some(unsigned) => Some(SignedBitCount {
1755                    bits: bits_new,
1756                    unsigned,
1757                }),
1758                None => None,
1759            },
1760            None => None,
1761        }
1762    }
1763
1764    /// Attempt to convert our count to a count with a new
1765    /// bit count and new maximum.
1766    ///
1767    /// Returns `Some(count)` if the updated number of bits
1768    /// is less than or equal to the new maximum
1769    /// and greater than 0.
1770    /// Returns `None` if not.
1771    ///
1772    /// # Examples
1773    /// ```
1774    /// use bitstream_io::SignedBitCount;
1775    ///
1776    /// let count = SignedBitCount::<5>::new::<5>();
1777    /// // muliplying 5 bits by 2 with a new max of 10 is ok
1778    /// assert_eq!(
1779    ///     count.try_map::<10, _>(|i| i.checked_mul(2)),
1780    ///     Some(SignedBitCount::<10>::new::<10>()),
1781    /// );
1782    ///
1783    /// // multiplying 5 bits by 3 with a new max of 10 overflows
1784    /// assert_eq!(count.try_map::<10, _>(|i| i.checked_mul(3)), None);
1785    ///
1786    /// // multiplying 5 bits by 0 results in 0 bits,
1787    /// // which isn't value for a SignedBitCount
1788    /// assert_eq!(count.try_map::<10, _>(|i| Some(i * 0)), None);
1789    /// ```
1790    #[inline]
1791    pub fn try_map<const NEW_MAX: u32, F>(self, f: F) -> Option<SignedBitCount<NEW_MAX>>
1792    where
1793        F: FnOnce(u32) -> Option<u32>,
1794    {
1795        self.bits.try_map(f).and_then(|b| b.signed_count())
1796    }
1797
1798    /// Returns our maximum bit count
1799    ///
1800    /// # Example
1801    /// ```
1802    /// use bitstream_io::SignedBitCount;
1803    ///
1804    /// let count = SignedBitCount::<10>::new::<5>();
1805    /// assert_eq!(count.max(), 10);
1806    /// ```
1807    #[inline(always)]
1808    pub const fn max(&self) -> u32 {
1809        MAX
1810    }
1811
1812    /// Returns regular unsigned bit count
1813    ///
1814    /// # Example
1815    ///
1816    /// ```
1817    /// use bitstream_io::{BitCount, SignedBitCount};
1818    ///
1819    /// let signed_count = SignedBitCount::<10>::new::<5>();
1820    /// assert_eq!(signed_count.count(), BitCount::<10>::new::<5>());
1821    /// ```
1822    #[inline(always)]
1823    pub const fn count(&self) -> BitCount<MAX> {
1824        self.bits
1825    }
1826
1827    /// Returns this bit count's range for the given signed type
1828    ///
1829    /// # Example
1830    ///
1831    /// ```
1832    /// use bitstream_io::SignedBitCount;
1833    ///
1834    /// assert_eq!(SignedBitCount::<9>::new::<1>().range::<i8>(), -1..=0);
1835    /// assert_eq!(SignedBitCount::<9>::new::<2>().range::<i8>(), -2..=1);
1836    /// assert_eq!(SignedBitCount::<9>::new::<3>().range::<i8>(), -4..=3);
1837    /// assert_eq!(SignedBitCount::<9>::new::<4>().range::<i8>(), -8..=7);
1838    /// assert_eq!(SignedBitCount::<9>::new::<5>().range::<i8>(), -16..=15);
1839    /// assert_eq!(SignedBitCount::<9>::new::<6>().range::<i8>(), -32..=31);
1840    /// assert_eq!(SignedBitCount::<9>::new::<7>().range::<i8>(), -64..=63);
1841    /// assert_eq!(SignedBitCount::<9>::new::<8>().range::<i8>(), -128..=127);
1842    /// // a count that exceeds the type's size is
1843    /// // naturally restricted to that type's maximum range
1844    /// assert_eq!(SignedBitCount::<9>::new::<9>().range::<i8>(), -128..=127);
1845    /// ```
1846    pub fn range<S: SignedInteger>(&self) -> core::ops::RangeInclusive<S> {
1847        // a bit of a hack to get around the somewhat restrictive
1848        // SignedInteger trait I've created for myself
1849
1850        if self.bits.bits < S::BITS_SIZE {
1851            (!S::ZERO << self.unsigned.bits)..=((S::ONE << self.unsigned.bits) - S::ONE)
1852        } else {
1853            S::Unsigned::ZERO.as_negative(S::BITS_SIZE)..=(S::Unsigned::ALL >> 1).as_non_negative()
1854        }
1855    }
1856}
1857
1858impl<const MAX: u32> core::convert::TryFrom<BitCount<MAX>> for SignedBitCount<MAX> {
1859    type Error = ();
1860
1861    #[inline]
1862    fn try_from(count: BitCount<MAX>) -> Result<Self, Self::Error> {
1863        count.signed_count().ok_or(())
1864    }
1865}
1866
1867impl<const MAX: u32> core::convert::TryFrom<u32> for SignedBitCount<MAX> {
1868    type Error = u32;
1869
1870    #[inline]
1871    fn try_from(count: u32) -> Result<Self, Self::Error> {
1872        BitCount::<MAX>::try_from(count).and_then(|b| b.signed_count().ok_or(count))
1873    }
1874}
1875
1876impl<const MAX: u32> From<SignedBitCount<MAX>> for u32 {
1877    #[inline(always)]
1878    fn from(
1879        SignedBitCount {
1880            bits: BitCount { bits },
1881            ..
1882        }: SignedBitCount<MAX>,
1883    ) -> u32 {
1884        bits
1885    }
1886}
1887
1888/// An error when converting a value to a [`Checked`] struct
1889#[derive(Copy, Clone, Debug)]
1890pub enum CheckedError {
1891    /// Excessive bits for type
1892    ExcessiveBits,
1893    /// Excessive value for bits
1894    ExcessiveValue,
1895}
1896
1897impl core::error::Error for CheckedError {}
1898
1899impl core::fmt::Display for CheckedError {
1900    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1901        match self {
1902            Self::ExcessiveBits => core::fmt::Display::fmt("excessive bits for type written", f),
1903            Self::ExcessiveValue => core::fmt::Display::fmt("excessive value for bits written", f),
1904        }
1905    }
1906}
1907
1908impl From<CheckedError> for io::Error {
1909    #[inline]
1910    fn from(error: CheckedError) -> Self {
1911        match error {
1912            CheckedError::ExcessiveBits => io::Error::new(
1913                io::ErrorKind::InvalidInput,
1914                "excessive bits for type written",
1915            ),
1916            CheckedError::ExcessiveValue => io::Error::new(
1917                io::ErrorKind::InvalidInput,
1918                "excessive value for bits written",
1919            ),
1920        }
1921    }
1922}
1923
1924/// A type for eliminating redundant validation when writing
1925///
1926/// Normally, when writing a value, not only must the number of bits
1927/// must be checked against the type being written
1928/// (e.g. writing 9 bits from a `u8` is always an error),
1929/// but the value must also be checked against the number of bits
1930/// (e.g. writing a value of 2 in 1 bit is always an error).
1931///
1932/// But when the value's range can be checked in advance,
1933/// the write-time check can be skipped through the use
1934/// of the [`BitWrite::write_checked`] method.
1935#[derive(Copy, Clone, Debug)]
1936pub struct Checked<C, T> {
1937    count: C,
1938    value: T,
1939}
1940
1941impl<C, T> Checked<C, T> {
1942    /// Returns our bit count and value
1943    #[inline]
1944    pub fn into_count_value(self) -> (C, T) {
1945        (self.count, self.value)
1946    }
1947
1948    /// Returns our value
1949    #[inline]
1950    pub fn into_value(self) -> T {
1951        self.value
1952    }
1953}
1954
1955impl<C, T> AsRef<T> for Checked<C, T> {
1956    fn as_ref(&self) -> &T {
1957        &self.value
1958    }
1959}
1960
1961/// An unsigned type with a verified value
1962pub type CheckedUnsigned<const MAX: u32, T> = Checked<BitCount<MAX>, T>;
1963
1964impl<const MAX: u32, U: UnsignedInteger> Checkable for CheckedUnsigned<MAX, U> {
1965    #[inline]
1966    fn write<W: BitWrite + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
1967        // a naive default implementation
1968        writer.write_unsigned_counted(self.count, self.value)
1969    }
1970
1971    #[inline]
1972    fn written_bits(&self) -> u32 {
1973        self.count.bits
1974    }
1975}
1976
1977impl<const MAX: u32, U: UnsignedInteger> CheckablePrimitive for CheckedUnsigned<MAX, U> {
1978    type CountType = BitCount<MAX>;
1979
1980    #[inline]
1981    fn read<R: BitRead + ?Sized>(reader: &mut R, count: Self::CountType) -> io::Result<Self> {
1982        reader
1983            .read_unsigned_counted(count)
1984            .map(|value| Self { value, count })
1985    }
1986}
1987
1988impl<const MAX: u32, U: UnsignedInteger> private::Checkable for CheckedUnsigned<MAX, U> {
1989    fn write_endian<E, W>(
1990        self,
1991        writer: &mut W,
1992        queue_value: &mut u8,
1993        queue_bits: &mut u32,
1994    ) -> io::Result<()>
1995    where
1996        E: private::Endianness,
1997        W: io::Write,
1998    {
1999        E::write_bits_checked(writer, queue_value, queue_bits, self)
2000    }
2001}
2002
2003impl<const MAX: u32, U: UnsignedInteger> CheckedUnsigned<MAX, U> {
2004    /// Returns our value if it fits in the given number of bits
2005    ///
2006    /// # Example
2007    ///
2008    /// ```
2009    /// use bitstream_io::{BitCount, CheckedUnsigned, CheckedError};
2010    ///
2011    /// // a value of 7 fits into a 3 bit count
2012    /// assert!(CheckedUnsigned::<8, u8>::new(3, 0b111).is_ok());
2013    ///
2014    /// // a value of 8 does not fit into a 3 bit count
2015    /// assert!(matches!(
2016    ///     CheckedUnsigned::<8, u8>::new(3, 0b1000),
2017    ///     Err(CheckedError::ExcessiveValue),
2018    /// ));
2019    ///
2020    /// // a bit count of 9 is too large for u8
2021    /// assert!(matches!(
2022    ///     CheckedUnsigned::<9, _>::new(9, 1u8),
2023    ///     Err(CheckedError::ExcessiveBits),
2024    /// ));
2025    /// ```
2026    #[inline]
2027    pub fn new(count: impl TryInto<BitCount<MAX>>, value: U) -> Result<Self, CheckedError> {
2028        let count @ BitCount { bits } =
2029            count.try_into().map_err(|_| CheckedError::ExcessiveBits)?;
2030
2031        if MAX <= U::BITS_SIZE || bits <= U::BITS_SIZE {
2032            if bits == 0 {
2033                Ok(Self {
2034                    count,
2035                    value: U::ZERO,
2036                })
2037            } else if value <= U::ALL >> (U::BITS_SIZE - bits) {
2038                Ok(Self { count, value })
2039            } else {
2040                Err(CheckedError::ExcessiveValue)
2041            }
2042        } else {
2043            Err(CheckedError::ExcessiveBits)
2044        }
2045    }
2046
2047    /// Returns our value if it fits in the given number of const bits
2048    ///
2049    /// # Examples
2050    ///
2051    /// ```
2052    /// use bitstream_io::{CheckedUnsigned, CheckedError};
2053    ///
2054    /// // a value of 7 fits into a 3 bit count
2055    /// assert!(CheckedUnsigned::<8, u8>::new_fixed::<3>(0b111).is_ok());
2056    ///
2057    /// // a value of 8 does not fit into a 3 bit count
2058    /// assert!(matches!(
2059    ///     CheckedUnsigned::<8, u8>::new_fixed::<3>(0b1000),
2060    ///     Err(CheckedError::ExcessiveValue),
2061    /// ));
2062    /// ```
2063    ///
2064    /// ```compile_fail
2065    /// use bitstream_io::{BitCount, CheckedUnsigned};
2066    ///
2067    /// // a bit count of 9 is too large for u8
2068    ///
2069    /// // because this is checked at compile-time,
2070    /// // it does not compile at all
2071    /// let c = CheckedUnsigned::<16, u8>::new_fixed::<9>(1);
2072    /// ```
2073    pub fn new_fixed<const BITS: u32>(value: U) -> Result<Self, CheckedError> {
2074        const {
2075            assert!(BITS <= U::BITS_SIZE, "excessive bits for type written");
2076        }
2077
2078        if BITS == 0 {
2079            Ok(Self {
2080                count: BitCount::new::<0>(),
2081                value: U::ZERO,
2082            })
2083        } else if BITS == U::BITS_SIZE || value <= (U::ALL >> (U::BITS_SIZE - BITS)) {
2084            Ok(Self {
2085                // whether BITS is larger than MAX is checked here
2086                count: BitCount::new::<BITS>(),
2087                value,
2088            })
2089        } else {
2090            Err(CheckedError::ExcessiveValue)
2091        }
2092    }
2093}
2094
2095/// A signed type with a verified value
2096pub type CheckedSigned<const MAX: u32, T> = Checked<SignedBitCount<MAX>, T>;
2097
2098impl<const MAX: u32, S: SignedInteger> Checkable for CheckedSigned<MAX, S> {
2099    #[inline]
2100    fn write<W: BitWrite + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
2101        // a naive default implementation
2102        writer.write_signed_counted(self.count, self.value)
2103    }
2104
2105    #[inline]
2106    fn written_bits(&self) -> u32 {
2107        self.count.bits.into()
2108    }
2109}
2110
2111impl<const MAX: u32, S: SignedInteger> CheckablePrimitive for CheckedSigned<MAX, S> {
2112    type CountType = SignedBitCount<MAX>;
2113
2114    #[inline]
2115    fn read<R: BitRead + ?Sized>(reader: &mut R, count: Self::CountType) -> io::Result<Self> {
2116        reader
2117            .read_signed_counted(count)
2118            .map(|value| Self { value, count })
2119    }
2120}
2121
2122impl<const MAX: u32, S: SignedInteger> private::Checkable for CheckedSigned<MAX, S> {
2123    fn write_endian<E, W>(
2124        self,
2125        writer: &mut W,
2126        queue_value: &mut u8,
2127        queue_bits: &mut u32,
2128    ) -> io::Result<()>
2129    where
2130        E: private::Endianness,
2131        W: io::Write,
2132    {
2133        E::write_signed_bits_checked(writer, queue_value, queue_bits, self)
2134    }
2135}
2136
2137impl<const MAX: u32, S: SignedInteger> CheckedSigned<MAX, S> {
2138    /// Returns our value if it fits in the given number of bits
2139    ///
2140    /// # Example
2141    ///
2142    /// ```
2143    /// use bitstream_io::{SignedBitCount, CheckedSigned, CheckedError};
2144    ///
2145    /// // a value of 3 fits into a 3 bit count
2146    /// assert!(CheckedSigned::<8, _>::new(3, 3i8).is_ok());
2147    ///
2148    /// // a value of 4 does not fit into a 3 bit count
2149    /// assert!(matches!(
2150    ///     CheckedSigned::<8, _>::new(3, 4i8),
2151    ///     Err(CheckedError::ExcessiveValue),
2152    /// ));
2153    ///
2154    /// // a bit count of 9 is too large for i8
2155    /// assert!(matches!(
2156    ///     CheckedSigned::<9, _>::new(9, 1i8),
2157    ///     Err(CheckedError::ExcessiveBits),
2158    /// ));
2159    /// ```
2160    #[inline]
2161    pub fn new(count: impl TryInto<SignedBitCount<MAX>>, value: S) -> Result<Self, CheckedError> {
2162        let count @ SignedBitCount {
2163            bits: BitCount { bits },
2164            unsigned: BitCount {
2165                bits: unsigned_bits,
2166            },
2167        } = count.try_into().map_err(|_| CheckedError::ExcessiveBits)?;
2168
2169        if MAX <= S::BITS_SIZE || bits <= S::BITS_SIZE {
2170            if bits == S::BITS_SIZE
2171                || (((S::ZERO - S::ONE) << unsigned_bits) <= value
2172                    && value < (S::ONE << unsigned_bits))
2173            {
2174                Ok(Self { count, value })
2175            } else {
2176                Err(CheckedError::ExcessiveValue)
2177            }
2178        } else {
2179            Err(CheckedError::ExcessiveBits)
2180        }
2181    }
2182
2183    /// Returns our value if it fits in the given number of const bits
2184    ///
2185    /// # Examples
2186    ///
2187    /// ```
2188    /// use bitstream_io::{CheckedSigned, CheckedError};
2189    ///
2190    /// // a value of 3 fits into a 3 bit count
2191    /// assert!(CheckedSigned::<8, i8>::new_fixed::<3>(3).is_ok());
2192    ///
2193    /// // a value of 4 does not fit into a 3 bit count
2194    /// assert!(matches!(
2195    ///     CheckedSigned::<8, i8>::new_fixed::<3>(4),
2196    ///     Err(CheckedError::ExcessiveValue),
2197    /// ));
2198    /// ```
2199    ///
2200    /// ```compile_fail
2201    /// use bitstream_io::{BitCount, CheckedSigned};
2202    ///
2203    /// // a bit count of 9 is too large for i8
2204    ///
2205    /// // because this is checked at compile-time,
2206    /// // it does not compile at all
2207    /// let c = CheckedSigned::<16, i8>::new_fixed::<9>(1);
2208    /// ```
2209    pub fn new_fixed<const BITS: u32>(value: S) -> Result<Self, CheckedError> {
2210        const {
2211            assert!(BITS <= S::BITS_SIZE, "excessive bits for type written");
2212        }
2213
2214        if BITS == S::BITS_SIZE
2215            || (((S::ZERO - S::ONE) << (BITS - 1)) <= value && value < (S::ONE << (BITS - 1)))
2216        {
2217            Ok(Self {
2218                count: SignedBitCount::new::<BITS>(),
2219                value,
2220            })
2221        } else {
2222            Err(CheckedError::ExcessiveValue)
2223        }
2224    }
2225}
2226
2227/// A trait for writable types whose values can be validated
2228///
2229/// Ordinarily, when writing a value to a stream with a given
2230/// number of bits, the value must be validated to ensure
2231/// it will fit within that number of bits.
2232///
2233/// # Example 1
2234///
2235/// ```
2236/// use bitstream_io::{BitWrite, BitWriter, BigEndian};
2237///
2238/// let mut w = BitWriter::endian(vec![], BigEndian);
2239///
2240/// // writing a value of 2 in 1 bit is always an error
2241/// // which is checked here at write-time
2242/// assert!(w.write::<1, u8>(2).is_err());
2243/// ```
2244///
2245/// But if the value can be checked beforehand,
2246/// it doesn't need to be checked at write-time.
2247///
2248/// # Example 2
2249///
2250/// ```
2251/// use bitstream_io::{BitWrite, BitWriter, BigEndian, CheckedUnsigned};
2252///
2253/// let mut w = BitWriter::endian(vec![], BigEndian);
2254///
2255/// // writing a value of 1 in 1 bit is ok
2256/// // and we're checking that validity at this stage
2257/// let value = CheckedUnsigned::<1, u8>::new_fixed::<1>(1).unwrap();
2258///
2259/// // because we've pre-validated the value beforehand,
2260/// // it doesn't need to be checked again here
2261/// // (though the write itself may still fail)
2262/// assert!(w.write_checked(value).is_ok());
2263/// ```
2264///
2265pub trait Checkable: private::Checkable + Sized {
2266    /// Write our value to the given stream
2267    fn write<W: BitWrite + ?Sized>(&self, writer: &mut W) -> io::Result<()>;
2268
2269    /// The number of written bits
2270    fn written_bits(&self) -> u32;
2271}
2272
2273/// A trait for readable types whose bit counts can be saved
2274///
2275/// Because the intent of reading checkable values is
2276/// to avoid validating their values when being written,
2277/// implementing the [`Checkable`] trait is required.
2278pub trait CheckablePrimitive: Checkable {
2279    /// Our bit count type for reading
2280    type CountType;
2281
2282    /// Reads our value from the given stream
2283    fn read<R: BitRead + ?Sized>(reader: &mut R, count: Self::CountType) -> io::Result<Self>;
2284}
2285
2286/// Big-endian, or most significant bits first
2287#[derive(Copy, Clone, Debug)]
2288pub struct BigEndian;
2289
2290/// Big-endian, or most significant bits first
2291pub type BE = BigEndian;
2292
2293impl BigEndian {
2294    // checked in the sense that we've verified
2295    // the output type is large enough to hold the
2296    // requested number of bits
2297    #[inline]
2298    fn read_bits_checked<const MAX: u32, R, U>(
2299        reader: &mut R,
2300        queue: &mut u8,
2301        queue_bits: &mut u32,
2302        BitCount { bits }: BitCount<MAX>,
2303    ) -> io::Result<U>
2304    where
2305        R: io::Read,
2306        U: UnsignedInteger,
2307    {
2308        // reads a whole value with the given number of
2309        // bytes in our endianness, where the number of bytes
2310        // must be less than or equal to the type's size in bytes
2311        #[inline(always)]
2312        fn read_bytes<R, U>(reader: &mut R, bytes: usize) -> io::Result<U>
2313        where
2314            R: io::Read,
2315            U: UnsignedInteger,
2316        {
2317            let mut buf = U::buffer();
2318            reader
2319                .read_exact(&mut buf.as_mut()[(mem::size_of::<U>() - bytes)..])
2320                .map(|()| U::from_be_bytes(buf))
2321        }
2322
2323        if bits <= *queue_bits {
2324            // all bits in queue, so no byte needed
2325            let value = queue.shr_default(u8::BITS_SIZE - bits);
2326            *queue = queue.shl_default(bits);
2327            *queue_bits -= bits;
2328            Ok(U::from_u8(value))
2329        } else {
2330            // at least one byte needed
2331
2332            // bits needed beyond what's in the queue
2333            let needed_bits = bits - *queue_bits;
2334
2335            match (needed_bits / 8, needed_bits % 8) {
2336                (0, needed) => {
2337                    // only one additional byte needed,
2338                    // which we share between our returned value
2339                    // and the bit queue
2340                    let next_byte = read_byte(reader)?;
2341
2342                    Ok(U::from_u8(
2343                        mem::replace(queue, next_byte.shl_default(needed)).shr_default(
2344                            u8::BITS_SIZE - mem::replace(queue_bits, u8::BITS_SIZE - needed),
2345                        ),
2346                    )
2347                    .shl_default(needed)
2348                        | U::from_u8(next_byte.shr_default(u8::BITS_SIZE - needed)))
2349                }
2350                (bytes, 0) => {
2351                    // exact number of bytes needed beyond what's
2352                    // available in the queue
2353                    // so read a whole value from the reader
2354                    // and prepend what's left of our queue onto it
2355
2356                    Ok(U::from_u8(
2357                        mem::take(queue).shr_default(u8::BITS_SIZE - mem::take(queue_bits)),
2358                    )
2359                    .shl_default(needed_bits)
2360                        | read_bytes(reader, bytes as usize)?)
2361                }
2362                (bytes, needed) => {
2363                    // read a whole value from the reader
2364                    // prepend what's in the queue at the front of it
2365                    // *and* append a partial byte at the end of it
2366                    // while also updating the queue and its bit count
2367
2368                    let whole: U = read_bytes(reader, bytes as usize)?;
2369                    let next_byte = read_byte(reader)?;
2370
2371                    Ok(U::from_u8(
2372                        mem::replace(queue, next_byte.shl_default(needed)).shr_default(
2373                            u8::BITS_SIZE - mem::replace(queue_bits, u8::BITS_SIZE - needed),
2374                        ),
2375                    )
2376                    .shl_default(needed_bits)
2377                        | whole.shl_default(needed)
2378                        | U::from_u8(next_byte.shr_default(u8::BITS_SIZE - needed)))
2379                }
2380            }
2381        }
2382    }
2383}
2384
2385impl Endianness for BigEndian {}
2386
2387impl private::Endianness for BigEndian {
2388    #[inline]
2389    fn push_bit_flush(queue_value: &mut u8, queue_bits: &mut u32, bit: bool) -> Option<u8> {
2390        *queue_value = (*queue_value << 1) | u8::from(bit);
2391        *queue_bits = (*queue_bits + 1) % 8;
2392        (*queue_bits == 0).then(|| mem::take(queue_value))
2393    }
2394
2395    #[inline]
2396    fn read_bits<const MAX: u32, R, U>(
2397        reader: &mut R,
2398        queue_value: &mut u8,
2399        queue_bits: &mut u32,
2400        count @ BitCount { bits }: BitCount<MAX>,
2401    ) -> io::Result<U>
2402    where
2403        R: io::Read,
2404        U: UnsignedInteger,
2405    {
2406        if MAX <= U::BITS_SIZE || bits <= U::BITS_SIZE {
2407            Self::read_bits_checked::<MAX, R, U>(reader, queue_value, queue_bits, count)
2408        } else {
2409            Err(io::Error::new(
2410                io::ErrorKind::InvalidInput,
2411                "excessive bits for type read",
2412            ))
2413        }
2414    }
2415
2416    #[inline]
2417    fn read_bits_fixed<const BITS: u32, R, U>(
2418        reader: &mut R,
2419        queue_value: &mut u8,
2420        queue_bits: &mut u32,
2421    ) -> io::Result<U>
2422    where
2423        R: io::Read,
2424        U: UnsignedInteger,
2425    {
2426        const {
2427            assert!(BITS <= U::BITS_SIZE, "excessive bits for type read");
2428        }
2429
2430        Self::read_bits_checked::<BITS, R, U>(
2431            reader,
2432            queue_value,
2433            queue_bits,
2434            BitCount::new::<BITS>(),
2435        )
2436    }
2437
2438    // checked in the sense that we've verified
2439    // the input type is large enough to hold the
2440    // requested number of bits and that the value is
2441    // not too large for those bits
2442    #[inline]
2443    fn write_bits_checked<const MAX: u32, W, U>(
2444        writer: &mut W,
2445        queue_value: &mut u8,
2446        queue_bits: &mut u32,
2447        CheckedUnsigned {
2448            count: BitCount { bits },
2449            value,
2450        }: CheckedUnsigned<MAX, U>,
2451    ) -> io::Result<()>
2452    where
2453        W: io::Write,
2454        U: UnsignedInteger,
2455    {
2456        fn write_bytes<W, U>(writer: &mut W, bytes: usize, value: U) -> io::Result<()>
2457        where
2458            W: io::Write,
2459            U: UnsignedInteger,
2460        {
2461            let buf = U::to_be_bytes(value);
2462            writer.write_all(&buf.as_ref()[(mem::size_of::<U>() - bytes)..])
2463        }
2464
2465        // the amount of available bits in the queue
2466        let available_bits = u8::BITS_SIZE - *queue_bits;
2467
2468        if bits < available_bits {
2469            // all bits fit in queue, so no write needed
2470            *queue_value = queue_value.shl_default(bits) | U::to_u8(value);
2471            *queue_bits += bits;
2472            Ok(())
2473        } else {
2474            // at least one byte needs to be written
2475
2476            // bits beyond what can fit in the queue
2477            let excess_bits = bits - available_bits;
2478
2479            match (excess_bits / 8, excess_bits % 8) {
2480                (0, excess) => {
2481                    // only one byte to be written,
2482                    // while the excess bits are shared
2483                    // between the written byte and the bit queue
2484
2485                    *queue_bits = excess;
2486
2487                    write_byte(
2488                        writer,
2489                        mem::replace(
2490                            queue_value,
2491                            U::to_u8(value & U::ALL.shr_default(U::BITS_SIZE - excess)),
2492                        )
2493                        .shl_default(available_bits)
2494                            | U::to_u8(value.shr_default(excess)),
2495                    )
2496                }
2497                (bytes, 0) => {
2498                    // no excess bytes beyond what can fit the queue
2499                    // so write a whole byte and
2500                    // the remainder of the whole value
2501
2502                    *queue_bits = 0;
2503
2504                    write_byte(
2505                        writer.by_ref(),
2506                        mem::take(queue_value).shl_default(available_bits)
2507                            | U::to_u8(value.shr_default(bytes * 8)),
2508                    )?;
2509
2510                    write_bytes(writer, bytes as usize, value)
2511                }
2512                (bytes, excess) => {
2513                    // write what's in the queue along
2514                    // with the head of our whole value,
2515                    // write the middle section of our whole value,
2516                    // while also replacing the queue with
2517                    // the tail of our whole value
2518
2519                    *queue_bits = excess;
2520
2521                    write_byte(
2522                        writer.by_ref(),
2523                        mem::replace(
2524                            queue_value,
2525                            U::to_u8(value & U::ALL.shr_default(U::BITS_SIZE - excess)),
2526                        )
2527                        .shl_default(available_bits)
2528                            | U::to_u8(value.shr_default(excess + bytes * 8)),
2529                    )?;
2530
2531                    write_bytes(writer, bytes as usize, value.shr_default(excess))
2532                }
2533            }
2534        }
2535    }
2536
2537    fn write_signed_bits_checked<const MAX: u32, W, S>(
2538        writer: &mut W,
2539        queue_value: &mut u8,
2540        queue_bits: &mut u32,
2541        value: CheckedSigned<MAX, S>,
2542    ) -> io::Result<()>
2543    where
2544        W: io::Write,
2545        S: SignedInteger,
2546    {
2547        let (
2548            SignedBitCount {
2549                bits: BitCount { bits },
2550                unsigned,
2551            },
2552            value,
2553        ) = value.into_count_value();
2554
2555        if let Some(b) = Self::push_bit_flush(queue_value, queue_bits, value.is_negative()) {
2556            write_byte(writer.by_ref(), b)?;
2557        }
2558        Self::write_bits_checked(
2559            writer,
2560            queue_value,
2561            queue_bits,
2562            Checked {
2563                value: if value.is_negative() {
2564                    value.as_negative(bits)
2565                } else {
2566                    value.as_non_negative()
2567                },
2568                count: unsigned,
2569            },
2570        )
2571    }
2572
2573    #[inline]
2574    fn pop_bit_refill<R>(
2575        reader: &mut R,
2576        queue_value: &mut u8,
2577        queue_bits: &mut u32,
2578    ) -> io::Result<bool>
2579    where
2580        R: io::Read,
2581    {
2582        Ok(if *queue_bits == 0 {
2583            let value = read_byte(reader)?;
2584            let msb = value & u8::MSB_BIT;
2585            *queue_value = value << 1;
2586            *queue_bits = u8::BITS_SIZE - 1;
2587            msb
2588        } else {
2589            let msb = *queue_value & u8::MSB_BIT;
2590            *queue_value <<= 1;
2591            *queue_bits -= 1;
2592            msb
2593        } != 0)
2594    }
2595
2596    #[inline]
2597    fn pop_unary<const STOP_BIT: u8, R>(
2598        reader: &mut R,
2599        queue_value: &mut u8,
2600        queue_bits: &mut u32,
2601    ) -> io::Result<u32>
2602    where
2603        R: io::Read,
2604    {
2605        const {
2606            assert!(matches!(STOP_BIT, 0 | 1), "stop bit must be 0 or 1");
2607        }
2608
2609        match STOP_BIT {
2610            0 => find_unary(
2611                reader,
2612                queue_value,
2613                queue_bits,
2614                |v| v.leading_ones(),
2615                |q| *q,
2616                |v, b| v.checked_shl(b),
2617            ),
2618            1 => find_unary(
2619                reader,
2620                queue_value,
2621                queue_bits,
2622                |v| v.leading_zeros(),
2623                |_| u8::BITS_SIZE,
2624                |v, b| v.checked_shl(b),
2625            ),
2626            _ => unreachable!(),
2627        }
2628    }
2629
2630    #[inline]
2631    fn read_signed_counted<const MAX: u32, R, S>(
2632        r: &mut R,
2633        SignedBitCount {
2634            bits: BitCount { bits },
2635            unsigned,
2636        }: SignedBitCount<MAX>,
2637    ) -> io::Result<S>
2638    where
2639        R: BitRead,
2640        S: SignedInteger,
2641    {
2642        if MAX <= S::BITS_SIZE || bits <= S::BITS_SIZE {
2643            let is_negative = r.read_bit()?;
2644            let unsigned = r.read_unsigned_counted::<MAX, S::Unsigned>(unsigned)?;
2645            Ok(if is_negative {
2646                unsigned.as_negative(bits)
2647            } else {
2648                unsigned.as_non_negative()
2649            })
2650        } else {
2651            Err(io::Error::new(
2652                io::ErrorKind::InvalidInput,
2653                "excessive bits for type read",
2654            ))
2655        }
2656    }
2657
2658    fn read_bytes<const CHUNK_SIZE: usize, R>(
2659        reader: &mut R,
2660        queue_value: &mut u8,
2661        queue_bits: u32,
2662        buf: &mut [u8],
2663    ) -> io::Result<()>
2664    where
2665        R: io::Read,
2666    {
2667        if queue_bits == 0 {
2668            reader.read_exact(buf)
2669        } else {
2670            let mut input_chunk: [u8; CHUNK_SIZE] = [0; CHUNK_SIZE];
2671
2672            for output_chunk in buf.chunks_mut(CHUNK_SIZE) {
2673                let input_chunk = &mut input_chunk[0..output_chunk.len()];
2674                reader.read_exact(input_chunk)?;
2675
2676                // shift down each byte in our input to eventually
2677                // accomodate the contents of the bit queue
2678                // and make that our output
2679                output_chunk
2680                    .iter_mut()
2681                    .zip(input_chunk.iter())
2682                    .for_each(|(o, i)| {
2683                        *o = i >> queue_bits;
2684                    });
2685
2686                // include leftover bits from the next byte
2687                // shifted to the top
2688                output_chunk[1..]
2689                    .iter_mut()
2690                    .zip(input_chunk.iter())
2691                    .for_each(|(o, i)| {
2692                        *o |= *i << (u8::BITS_SIZE - queue_bits);
2693                    });
2694
2695                // finally, prepend the queue's contents
2696                // to the first byte in the chunk
2697                // while replacing those contents
2698                // with the final byte of the input
2699                output_chunk[0] |= mem::replace(
2700                    queue_value,
2701                    input_chunk.last().unwrap() << (u8::BITS_SIZE - queue_bits),
2702                );
2703            }
2704
2705            Ok(())
2706        }
2707    }
2708
2709    fn write_bytes<const CHUNK_SIZE: usize, W>(
2710        writer: &mut W,
2711        queue_value: &mut u8,
2712        queue_bits: u32,
2713        buf: &[u8],
2714    ) -> io::Result<()>
2715    where
2716        W: io::Write,
2717    {
2718        if queue_bits == 0 {
2719            writer.write_all(buf)
2720        } else {
2721            let mut output_chunk: [u8; CHUNK_SIZE] = [0; CHUNK_SIZE];
2722
2723            for input_chunk in buf.chunks(CHUNK_SIZE) {
2724                let output_chunk = &mut output_chunk[0..input_chunk.len()];
2725
2726                output_chunk
2727                    .iter_mut()
2728                    .zip(input_chunk.iter())
2729                    .for_each(|(o, i)| {
2730                        *o = i >> queue_bits;
2731                    });
2732
2733                output_chunk[1..]
2734                    .iter_mut()
2735                    .zip(input_chunk.iter())
2736                    .for_each(|(o, i)| {
2737                        *o |= *i << (u8::BITS_SIZE - queue_bits);
2738                    });
2739
2740                output_chunk[0] |= mem::replace(
2741                    queue_value,
2742                    input_chunk.last().unwrap() & (u8::ALL >> (u8::BITS_SIZE - queue_bits)),
2743                ) << (u8::BITS_SIZE - queue_bits);
2744
2745                writer.write_all(output_chunk)?;
2746            }
2747
2748            Ok(())
2749        }
2750    }
2751
2752    #[inline(always)]
2753    fn bytes_to_primitive<P: Primitive>(buf: P::Bytes) -> P {
2754        P::from_be_bytes(buf)
2755    }
2756
2757    #[inline(always)]
2758    fn primitive_to_bytes<P: Primitive>(p: P) -> P::Bytes {
2759        p.to_be_bytes()
2760    }
2761
2762    #[inline]
2763    fn read_primitive<R, V>(r: &mut R) -> io::Result<V>
2764    where
2765        R: BitRead,
2766        V: Primitive,
2767    {
2768        let mut buffer = V::buffer();
2769        r.read_bytes(buffer.as_mut())?;
2770        Ok(V::from_be_bytes(buffer))
2771    }
2772
2773    #[inline]
2774    fn write_primitive<W, V>(w: &mut W, value: V) -> io::Result<()>
2775    where
2776        W: BitWrite,
2777        V: Primitive,
2778    {
2779        w.write_bytes(value.to_be_bytes().as_ref())
2780    }
2781}
2782
2783/// Little-endian, or least significant bits first
2784#[derive(Copy, Clone, Debug)]
2785pub struct LittleEndian;
2786
2787/// Little-endian, or least significant bits first
2788pub type LE = LittleEndian;
2789
2790impl LittleEndian {
2791    // checked in the sense that we've verified
2792    // the output type is large enough to hold the
2793    // requested number of bits
2794    #[inline]
2795    fn read_bits_checked<const MAX: u32, R, U>(
2796        reader: &mut R,
2797        queue: &mut u8,
2798        queue_bits: &mut u32,
2799        BitCount { bits }: BitCount<MAX>,
2800    ) -> io::Result<U>
2801    where
2802        R: io::Read,
2803        U: UnsignedInteger,
2804    {
2805        // reads a whole value with the given number of
2806        // bytes in our endianness, where the number of bytes
2807        // must be less than or equal to the type's size in bytes
2808        #[inline(always)]
2809        fn read_bytes<R, U>(reader: &mut R, bytes: usize) -> io::Result<U>
2810        where
2811            R: io::Read,
2812            U: UnsignedInteger,
2813        {
2814            let mut buf = U::buffer();
2815            reader
2816                .read_exact(&mut buf.as_mut()[0..bytes])
2817                .map(|()| U::from_le_bytes(buf))
2818        }
2819
2820        if bits <= *queue_bits {
2821            // all bits in queue, so no byte needed
2822            let value = *queue & u8::ALL.shr_default(u8::BITS_SIZE - bits);
2823            *queue = queue.shr_default(bits);
2824            *queue_bits -= bits;
2825            Ok(U::from_u8(value))
2826        } else {
2827            // at least one byte needed
2828
2829            // bits needed beyond what's in the queue
2830            let needed_bits = bits - *queue_bits;
2831
2832            match (needed_bits / 8, needed_bits % 8) {
2833                (0, needed) => {
2834                    // only one additional byte needed,
2835                    // which we share between our returned value
2836                    // and the bit queue
2837                    let next_byte = read_byte(reader)?;
2838
2839                    Ok(
2840                        U::from_u8(mem::replace(queue, next_byte.shr_default(needed)))
2841                            | (U::from_u8(next_byte & (u8::ALL >> (u8::BITS_SIZE - needed)))
2842                                << mem::replace(queue_bits, u8::BITS_SIZE - needed)),
2843                    )
2844                }
2845                (bytes, 0) => {
2846                    // exact number of bytes needed beyond what's
2847                    // available in the queue
2848
2849                    // so read a whole value from the reader
2850                    // and prepend what's left of our queue onto it
2851
2852                    Ok(U::from_u8(mem::take(queue))
2853                        | (read_bytes::<R, U>(reader, bytes as usize)? << mem::take(queue_bits)))
2854                }
2855                (bytes, needed) => {
2856                    // read a whole value from the reader
2857                    // prepend what's in the queue at the front of it
2858                    // *and* append a partial byte at the end of it
2859                    // while also updating the queue and its bit count
2860
2861                    let whole: U = read_bytes(reader, bytes as usize)?;
2862                    let next_byte = read_byte(reader)?;
2863
2864                    Ok(
2865                        U::from_u8(mem::replace(queue, next_byte.shr_default(needed)))
2866                            | (whole << *queue_bits)
2867                            | (U::from_u8(next_byte & (u8::ALL >> (u8::BITS_SIZE - needed)))
2868                                << (mem::replace(queue_bits, u8::BITS_SIZE - needed) + bytes * 8)),
2869                    )
2870                }
2871            }
2872        }
2873    }
2874}
2875
2876impl Endianness for LittleEndian {}
2877
2878impl private::Endianness for LittleEndian {
2879    #[inline]
2880    fn push_bit_flush(queue_value: &mut u8, queue_bits: &mut u32, bit: bool) -> Option<u8> {
2881        *queue_value |= u8::from(bit) << *queue_bits;
2882        *queue_bits = (*queue_bits + 1) % 8;
2883        (*queue_bits == 0).then(|| mem::take(queue_value))
2884    }
2885
2886    #[inline]
2887    fn read_bits<const MAX: u32, R, U>(
2888        reader: &mut R,
2889        queue_value: &mut u8,
2890        queue_bits: &mut u32,
2891        count @ BitCount { bits }: BitCount<MAX>,
2892    ) -> io::Result<U>
2893    where
2894        R: io::Read,
2895        U: UnsignedInteger,
2896    {
2897        if MAX <= U::BITS_SIZE || bits <= U::BITS_SIZE {
2898            Self::read_bits_checked::<MAX, R, U>(reader, queue_value, queue_bits, count)
2899        } else {
2900            Err(io::Error::new(
2901                io::ErrorKind::InvalidInput,
2902                "excessive bits for type read",
2903            ))
2904        }
2905    }
2906
2907    #[inline]
2908    fn read_bits_fixed<const BITS: u32, R, U>(
2909        reader: &mut R,
2910        queue_value: &mut u8,
2911        queue_bits: &mut u32,
2912    ) -> io::Result<U>
2913    where
2914        R: io::Read,
2915        U: UnsignedInteger,
2916    {
2917        const {
2918            assert!(BITS <= U::BITS_SIZE, "excessive bits for type read");
2919        }
2920
2921        Self::read_bits_checked::<BITS, R, U>(
2922            reader,
2923            queue_value,
2924            queue_bits,
2925            BitCount::new::<BITS>(),
2926        )
2927    }
2928
2929    // checked in the sense that we've verified
2930    // the input type is large enough to hold the
2931    // requested number of bits and that the value is
2932    // not too large for those bits
2933    #[inline]
2934    fn write_bits_checked<const MAX: u32, W, U>(
2935        writer: &mut W,
2936        queue_value: &mut u8,
2937        queue_bits: &mut u32,
2938        CheckedUnsigned {
2939            count: BitCount { bits },
2940            value,
2941        }: CheckedUnsigned<MAX, U>,
2942    ) -> io::Result<()>
2943    where
2944        W: io::Write,
2945        U: UnsignedInteger,
2946    {
2947        fn write_bytes<W, U>(writer: &mut W, bytes: usize, value: U) -> io::Result<()>
2948        where
2949            W: io::Write,
2950            U: UnsignedInteger,
2951        {
2952            let buf = U::to_le_bytes(value);
2953            writer.write_all(&buf.as_ref()[0..bytes])
2954        }
2955
2956        // the amount of available bits in the queue
2957        let available_bits = u8::BITS_SIZE - *queue_bits;
2958
2959        if bits < available_bits {
2960            // all bits fit in queue, so no write needed
2961            *queue_value |= U::to_u8(value.shl_default(*queue_bits));
2962            *queue_bits += bits;
2963            Ok(())
2964        } else {
2965            // at least one byte needs to be written
2966
2967            // bits beyond what can fit in the queue
2968            let excess_bits = bits - available_bits;
2969
2970            match (excess_bits / 8, excess_bits % 8) {
2971                (0, excess) => {
2972                    // only one byte to be written,
2973                    // while the excess bits are shared
2974                    // between the written byte and the bit queue
2975
2976                    write_byte(
2977                        writer,
2978                        mem::replace(queue_value, U::to_u8(value.shr_default(available_bits)))
2979                            | U::to_u8(
2980                                (value << mem::replace(queue_bits, excess)) & U::from_u8(u8::ALL),
2981                            ),
2982                    )
2983                }
2984                (bytes, 0) => {
2985                    // no excess bytes beyond what can fit the queue
2986                    // so write a whole byte and
2987                    // the remainder of the whole value
2988
2989                    write_byte(
2990                        writer.by_ref(),
2991                        mem::take(queue_value)
2992                            | U::to_u8((value << mem::take(queue_bits)) & U::from_u8(u8::ALL)),
2993                    )?;
2994
2995                    write_bytes(writer, bytes as usize, value >> available_bits)
2996                }
2997                (bytes, excess) => {
2998                    // write what's in the queue along
2999                    // with the head of our whole value,
3000                    // write the middle section of our whole value,
3001                    // while also replacing the queue with
3002                    // the tail of our whole value
3003
3004                    write_byte(
3005                        writer.by_ref(),
3006                        mem::replace(
3007                            queue_value,
3008                            U::to_u8(value.shr_default(available_bits + bytes * 8)),
3009                        ) | U::to_u8(
3010                            (value << mem::replace(queue_bits, excess)) & U::from_u8(u8::ALL),
3011                        ),
3012                    )?;
3013
3014                    write_bytes(writer, bytes as usize, value >> available_bits)
3015                }
3016            }
3017        }
3018    }
3019
3020    fn write_signed_bits_checked<const MAX: u32, W, S>(
3021        writer: &mut W,
3022        queue_value: &mut u8,
3023        queue_bits: &mut u32,
3024        value: CheckedSigned<MAX, S>,
3025    ) -> io::Result<()>
3026    where
3027        W: io::Write,
3028        S: SignedInteger,
3029    {
3030        // little-endian
3031        let (
3032            SignedBitCount {
3033                bits: BitCount { bits },
3034                unsigned,
3035            },
3036            value,
3037        ) = value.into_count_value();
3038
3039        Self::write_bits_checked(
3040            writer.by_ref(),
3041            queue_value,
3042            queue_bits,
3043            Checked {
3044                value: if value.is_negative() {
3045                    value.as_negative(bits)
3046                } else {
3047                    value.as_non_negative()
3048                },
3049                count: unsigned,
3050            },
3051        )?;
3052        match Self::push_bit_flush(queue_value, queue_bits, value.is_negative()) {
3053            Some(b) => write_byte(writer, b),
3054            None => Ok(()),
3055        }
3056    }
3057
3058    #[inline]
3059    fn pop_bit_refill<R>(
3060        reader: &mut R,
3061        queue_value: &mut u8,
3062        queue_bits: &mut u32,
3063    ) -> io::Result<bool>
3064    where
3065        R: io::Read,
3066    {
3067        Ok(if *queue_bits == 0 {
3068            let value = read_byte(reader)?;
3069            let lsb = value & u8::LSB_BIT;
3070            *queue_value = value >> 1;
3071            *queue_bits = u8::BITS_SIZE - 1;
3072            lsb
3073        } else {
3074            let lsb = *queue_value & u8::LSB_BIT;
3075            *queue_value >>= 1;
3076            *queue_bits -= 1;
3077            lsb
3078        } != 0)
3079    }
3080
3081    #[inline]
3082    fn pop_unary<const STOP_BIT: u8, R>(
3083        reader: &mut R,
3084        queue_value: &mut u8,
3085        queue_bits: &mut u32,
3086    ) -> io::Result<u32>
3087    where
3088        R: io::Read,
3089    {
3090        const {
3091            assert!(matches!(STOP_BIT, 0 | 1), "stop bit must be 0 or 1");
3092        }
3093
3094        match STOP_BIT {
3095            0 => find_unary(
3096                reader,
3097                queue_value,
3098                queue_bits,
3099                |v| v.trailing_ones(),
3100                |q| *q,
3101                |v, b| v.checked_shr(b),
3102            ),
3103            1 => find_unary(
3104                reader,
3105                queue_value,
3106                queue_bits,
3107                |v| v.trailing_zeros(),
3108                |_| u8::BITS_SIZE,
3109                |v, b| v.checked_shr(b),
3110            ),
3111            _ => unreachable!(),
3112        }
3113    }
3114
3115    #[inline]
3116    fn read_signed_counted<const MAX: u32, R, S>(
3117        r: &mut R,
3118        SignedBitCount {
3119            bits: BitCount { bits },
3120            unsigned,
3121        }: SignedBitCount<MAX>,
3122    ) -> io::Result<S>
3123    where
3124        R: BitRead,
3125        S: SignedInteger,
3126    {
3127        if MAX <= S::BITS_SIZE || bits <= S::BITS_SIZE {
3128            let unsigned = r.read_unsigned_counted::<MAX, S::Unsigned>(unsigned)?;
3129            let is_negative = r.read_bit()?;
3130            Ok(if is_negative {
3131                unsigned.as_negative(bits)
3132            } else {
3133                unsigned.as_non_negative()
3134            })
3135        } else {
3136            Err(io::Error::new(
3137                io::ErrorKind::InvalidInput,
3138                "excessive bits for type read",
3139            ))
3140        }
3141    }
3142
3143    fn read_bytes<const CHUNK_SIZE: usize, R>(
3144        reader: &mut R,
3145        queue_value: &mut u8,
3146        queue_bits: u32,
3147        buf: &mut [u8],
3148    ) -> io::Result<()>
3149    where
3150        R: io::Read,
3151    {
3152        if queue_bits == 0 {
3153            reader.read_exact(buf)
3154        } else {
3155            let mut input_chunk: [u8; CHUNK_SIZE] = [0; CHUNK_SIZE];
3156
3157            for output_chunk in buf.chunks_mut(CHUNK_SIZE) {
3158                let input_chunk = &mut input_chunk[0..output_chunk.len()];
3159                reader.read_exact(input_chunk)?;
3160
3161                output_chunk
3162                    .iter_mut()
3163                    .zip(input_chunk.iter())
3164                    .for_each(|(o, i)| {
3165                        *o = i << queue_bits;
3166                    });
3167
3168                output_chunk[1..]
3169                    .iter_mut()
3170                    .zip(input_chunk.iter())
3171                    .for_each(|(o, i)| {
3172                        *o |= i >> (u8::BITS_SIZE - queue_bits);
3173                    });
3174
3175                output_chunk[0] |= mem::replace(
3176                    queue_value,
3177                    input_chunk.last().unwrap() >> (u8::BITS_SIZE - queue_bits),
3178                );
3179            }
3180
3181            Ok(())
3182        }
3183    }
3184
3185    fn write_bytes<const CHUNK_SIZE: usize, W>(
3186        writer: &mut W,
3187        queue_value: &mut u8,
3188        queue_bits: u32,
3189        buf: &[u8],
3190    ) -> io::Result<()>
3191    where
3192        W: io::Write,
3193    {
3194        if queue_bits == 0 {
3195            writer.write_all(buf)
3196        } else {
3197            let mut output_chunk: [u8; CHUNK_SIZE] = [0; CHUNK_SIZE];
3198
3199            for input_chunk in buf.chunks(CHUNK_SIZE) {
3200                let output_chunk = &mut output_chunk[0..input_chunk.len()];
3201
3202                output_chunk
3203                    .iter_mut()
3204                    .zip(input_chunk.iter())
3205                    .for_each(|(o, i)| {
3206                        *o = i << queue_bits;
3207                    });
3208
3209                output_chunk[1..]
3210                    .iter_mut()
3211                    .zip(input_chunk.iter())
3212                    .for_each(|(o, i)| {
3213                        *o |= i >> (u8::BITS_SIZE - queue_bits);
3214                    });
3215
3216                output_chunk[0] |= mem::replace(
3217                    queue_value,
3218                    input_chunk.last().unwrap() >> (u8::BITS_SIZE - queue_bits),
3219                );
3220
3221                writer.write_all(output_chunk)?;
3222            }
3223
3224            Ok(())
3225        }
3226    }
3227
3228    #[inline(always)]
3229    fn bytes_to_primitive<P: Primitive>(buf: P::Bytes) -> P {
3230        P::from_le_bytes(buf)
3231    }
3232
3233    #[inline(always)]
3234    fn primitive_to_bytes<P: Primitive>(p: P) -> P::Bytes {
3235        p.to_le_bytes()
3236    }
3237
3238    #[inline]
3239    fn read_primitive<R, V>(r: &mut R) -> io::Result<V>
3240    where
3241        R: BitRead,
3242        V: Primitive,
3243    {
3244        let mut buffer = V::buffer();
3245        r.read_bytes(buffer.as_mut())?;
3246        Ok(V::from_le_bytes(buffer))
3247    }
3248
3249    #[inline]
3250    fn write_primitive<W, V>(w: &mut W, value: V) -> io::Result<()>
3251    where
3252        W: BitWrite,
3253        V: Primitive,
3254    {
3255        w.write_bytes(value.to_le_bytes().as_ref())
3256    }
3257}
3258
3259#[inline]
3260fn find_unary<R>(
3261    reader: &mut R,
3262    queue_value: &mut u8,
3263    queue_bits: &mut u32,
3264    leading_bits: impl Fn(u8) -> u32,
3265    max_bits: impl Fn(&mut u32) -> u32,
3266    checked_shift: impl Fn(u8, u32) -> Option<u8>,
3267) -> io::Result<u32>
3268where
3269    R: io::Read,
3270{
3271    let mut acc = 0;
3272
3273    loop {
3274        match leading_bits(*queue_value) {
3275            bits if bits == max_bits(queue_bits) => {
3276                // all bits exhausted
3277                // fetch another byte and keep going
3278                acc += *queue_bits;
3279                *queue_value = read_byte(reader.by_ref())?;
3280                *queue_bits = u8::BITS_SIZE;
3281            }
3282            bits => match checked_shift(*queue_value, bits + 1) {
3283                Some(value) => {
3284                    // fetch part of source byte
3285                    *queue_value = value;
3286                    *queue_bits -= bits + 1;
3287                    break Ok(acc + bits);
3288                }
3289                None => {
3290                    // fetch all of source byte
3291                    *queue_value = 0;
3292                    *queue_bits = 0;
3293                    break Ok(acc + bits);
3294                }
3295            },
3296        }
3297    }
3298}
OSZAR »