pub struct FractionFieldImplBase<R>{ /* private fields */ }
Expand description
§Availability
This API is marked as unstable and is only available when the unstable-enable
crate feature is enabled. This comes with no stability guarantees, and could be changed or removed at any time.
Trait Implementations§
Source§impl<R, S> CanHomFrom<FractionFieldImplBase<S>> for FractionFieldImplBase<R>
impl<R, S> CanHomFrom<FractionFieldImplBase<S>> for FractionFieldImplBase<R>
Source§type Homomorphism = <<R as RingStore>::Type as CanHomFrom<<S as RingStore>::Type>>::Homomorphism
type Homomorphism = <<R as RingStore>::Type as CanHomFrom<<S as RingStore>::Type>>::Homomorphism
Source§fn has_canonical_hom(
&self,
from: &FractionFieldImplBase<S>,
) -> Option<Self::Homomorphism>
fn has_canonical_hom( &self, from: &FractionFieldImplBase<S>, ) -> Option<Self::Homomorphism>
from -> self
, returns Some(data)
, where
data
is additional data that can be used to compute the action of the homomorphism
on ring elements. Otherwise, None
is returned.fn map_in( &self, from: &FractionFieldImplBase<S>, el: <FractionFieldImplBase<S> as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element
fn map_in_ref( &self, from: &S, el: &S::Element, hom: &Self::Homomorphism, ) -> Self::Element
fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )
fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )
Source§impl<R, I> CanHomFrom<RationalFieldBase<I>> for FractionFieldImplBase<R>
impl<R, I> CanHomFrom<RationalFieldBase<I>> for FractionFieldImplBase<R>
Source§type Homomorphism = <<R as RingStore>::Type as CanHomFrom<<I as RingStore>::Type>>::Homomorphism
type Homomorphism = <<R as RingStore>::Type as CanHomFrom<<I as RingStore>::Type>>::Homomorphism
Source§fn has_canonical_hom(
&self,
from: &RationalFieldBase<I>,
) -> Option<Self::Homomorphism>
fn has_canonical_hom( &self, from: &RationalFieldBase<I>, ) -> Option<Self::Homomorphism>
from -> self
, returns Some(data)
, where
data
is additional data that can be used to compute the action of the homomorphism
on ring elements. Otherwise, None
is returned.fn map_in( &self, from: &RationalFieldBase<I>, el: <RationalFieldBase<I> as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element
fn map_in_ref( &self, from: &S, el: &S::Element, hom: &Self::Homomorphism, ) -> Self::Element
fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )
fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )
Source§impl<R, S> CanIsoFromTo<FractionFieldImplBase<S>> for FractionFieldImplBase<R>
impl<R, S> CanIsoFromTo<FractionFieldImplBase<S>> for FractionFieldImplBase<R>
Source§type Isomorphism = <<R as RingStore>::Type as CanIsoFromTo<<S as RingStore>::Type>>::Isomorphism
type Isomorphism = <<R as RingStore>::Type as CanIsoFromTo<<S as RingStore>::Type>>::Isomorphism
Source§fn has_canonical_iso(
&self,
from: &FractionFieldImplBase<S>,
) -> Option<Self::Isomorphism>
fn has_canonical_iso( &self, from: &FractionFieldImplBase<S>, ) -> Option<Self::Isomorphism>
from -> self
, and this homomorphism
is an isomorphism, returns Some(data)
, where data
is additional data that
can be used to compute preimages under the homomorphism. Otherwise, None
is
returned.Source§fn map_out(
&self,
from: &FractionFieldImplBase<S>,
el: Self::Element,
iso: &Self::Isomorphism,
) -> <FractionFieldImplBase<S> as RingBase>::Element
fn map_out( &self, from: &FractionFieldImplBase<S>, el: Self::Element, iso: &Self::Isomorphism, ) -> <FractionFieldImplBase<S> as RingBase>::Element
el
under the canonical homomorphism from -> self
.Source§impl<R, I> CanIsoFromTo<RationalFieldBase<I>> for FractionFieldImplBase<R>
impl<R, I> CanIsoFromTo<RationalFieldBase<I>> for FractionFieldImplBase<R>
Source§type Isomorphism = <<R as RingStore>::Type as CanIsoFromTo<<I as RingStore>::Type>>::Isomorphism
type Isomorphism = <<R as RingStore>::Type as CanIsoFromTo<<I as RingStore>::Type>>::Isomorphism
Source§fn has_canonical_iso(
&self,
from: &RationalFieldBase<I>,
) -> Option<Self::Isomorphism>
fn has_canonical_iso( &self, from: &RationalFieldBase<I>, ) -> Option<Self::Isomorphism>
from -> self
, and this homomorphism
is an isomorphism, returns Some(data)
, where data
is additional data that
can be used to compute preimages under the homomorphism. Otherwise, None
is
returned.Source§fn map_out(
&self,
from: &RationalFieldBase<I>,
el: Self::Element,
iso: &Self::Isomorphism,
) -> <RationalFieldBase<I> as RingBase>::Element
fn map_out( &self, from: &RationalFieldBase<I>, el: Self::Element, iso: &Self::Isomorphism, ) -> <RationalFieldBase<I> as RingBase>::Element
el
under the canonical homomorphism from -> self
.Source§impl<R> Clone for FractionFieldImplBase<R>
impl<R> Clone for FractionFieldImplBase<R>
Source§impl<R> DivisibilityRing for FractionFieldImplBase<R>
impl<R> DivisibilityRing for FractionFieldImplBase<R>
Source§fn checked_left_div(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_left_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
x
such that rhs * x = lhs
, and
returns it if it exists. Read moreSource§fn is_unit(&self, x: &Self::Element) -> bool
fn is_unit(&self, x: &Self::Element) -> bool
Source§fn balance_factor<'a, I>(&self, elements: I) -> Option<Self::Element>
fn balance_factor<'a, I>(&self, elements: I) -> Option<Self::Element>
Source§type PreparedDivisorData = ()
type PreparedDivisorData = ()
Source§fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
x
such that rhs * x = lhs
.
If you need such an element, consider using DivisibilityRing::checked_left_div()
. Read moreSource§fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
DivisibilityRing::divides_left()
, but requires a commutative ring.Source§fn checked_div(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
DivisibilityRing::checked_left_div()
, but requires a commutative ring.Source§fn prepare_divisor(&self, _: &Self::Element) -> Self::PreparedDivisorData
fn prepare_divisor(&self, _: &Self::Element) -> Self::PreparedDivisorData
Source§fn checked_left_div_prepared(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_rhs_prep: &Self::PreparedDivisorData,
) -> Option<Self::Element>
fn checked_left_div_prepared( &self, lhs: &Self::Element, rhs: &Self::Element, _rhs_prep: &Self::PreparedDivisorData, ) -> Option<Self::Element>
DivisibilityRing::checked_left_div()
but for a prepared divisor. Read moreSource§fn divides_left_prepared(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_rhs_prep: &Self::PreparedDivisorData,
) -> bool
fn divides_left_prepared( &self, lhs: &Self::Element, rhs: &Self::Element, _rhs_prep: &Self::PreparedDivisorData, ) -> bool
DivisibilityRing::divides_left()
but for a prepared divisor. Read moreSource§fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool
fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool
DivisibilityRing::is_unit()
but for a prepared divisor. Read moreSource§impl<R> EuclideanRing for FractionFieldImplBase<R>
impl<R> EuclideanRing for FractionFieldImplBase<R>
Source§fn euclidean_deg(&self, val: &Self::Element) -> Option<usize>
fn euclidean_deg(&self, val: &Self::Element) -> Option<usize>
EuclideanRing
.Source§fn euclidean_div_rem(
&self,
lhs: Self::Element,
rhs: &Self::Element,
) -> (Self::Element, Self::Element)
fn euclidean_div_rem( &self, lhs: Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element)
Source§impl<R> Field for FractionFieldImplBase<R>
impl<R> Field for FractionFieldImplBase<R>
Source§impl<R> FractionField for FractionFieldImplBase<R>
impl<R> FractionField for FractionFieldImplBase<R>
Source§impl<R> HashableElRing for FractionFieldImplBase<R>
We don’t have a canonical representation when the base ring is not an integer ring
(even if it is a PID), since we can always multiply numerator/denominator by a unit.
impl<R> HashableElRing for FractionFieldImplBase<R>
We don’t have a canonical representation when the base ring is not an integer ring (even if it is a PID), since we can always multiply numerator/denominator by a unit.
Source§impl<R> KaratsubaHint for FractionFieldImplBase<R>
impl<R> KaratsubaHint for FractionFieldImplBase<R>
Source§default fn karatsuba_threshold(&self) -> usize
default fn karatsuba_threshold(&self) -> usize
KaratsubaAlgorithm
will use the Karatsuba algorithm. Read moreSource§impl<R> PartialEq for FractionFieldImplBase<R>
impl<R> PartialEq for FractionFieldImplBase<R>
Source§impl<R> PrincipalIdealRing for FractionFieldImplBase<R>
impl<R> PrincipalIdealRing for FractionFieldImplBase<R>
Source§fn checked_div_min(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_div_min( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
DivisibilityRing::checked_left_div()
this computes a “quotient” q
of lhs
and rhs
, if it exists. However, we impose the additional constraint
that this quotient be minimal, i.e. there is no q'
with q' | q
properly and
q' * rhs = lhs
. Read moreSource§fn extended_ideal_gen(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> (Self::Element, Self::Element, Self::Element)
fn extended_ideal_gen( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element, Self::Element)
g
of the ideal (lhs, rhs)
as g = s * lhs + t * rhs
. Read moreSource§fn annihilator(&self, val: &Self::Element) -> Self::Element
fn annihilator(&self, val: &Self::Element) -> Self::Element
Source§fn create_elimination_matrix(
&self,
a: &Self::Element,
b: &Self::Element,
) -> ([Self::Element; 4], Self::Element)
fn create_elimination_matrix( &self, a: &Self::Element, b: &Self::Element, ) -> ([Self::Element; 4], Self::Element)
A
of unit determinant such that A * (a, b)^T = (d, 0)
.
Returns (A, d)
.Source§impl<R> RingBase for FractionFieldImplBase<R>
impl<R> RingBase for FractionFieldImplBase<R>
Source§type Element = FractionFieldEl<R>
type Element = FractionFieldEl<R>
fn clone_el(&self, val: &Self::Element) -> Self::Element
fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn negate_inplace(&self, lhs: &mut Self::Element)
fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
fn is_zero(&self, value: &Self::Element) -> bool
fn is_one(&self, value: &Self::Element) -> bool
fn is_neg_one(&self, value: &Self::Element) -> bool
Source§fn is_approximate(&self) -> bool
fn is_approximate(&self) -> bool
f32
or
f64
, to represent real or complex numbers. Read moreSource§fn is_commutative(&self) -> bool
fn is_commutative(&self) -> bool
a * b = b * a
for all elements a, b
.
Note that addition is assumed to be always commutative.Source§fn is_noetherian(&self) -> bool
fn is_noetherian(&self) -> bool
fn from_int(&self, value: i32) -> Self::Element
Source§fn dbg_within<'a>(
&self,
value: &Self::Element,
out: &mut Formatter<'a>,
env: EnvBindingStrength,
) -> Result
fn dbg_within<'a>( &self, value: &Self::Element, out: &mut Formatter<'a>, env: EnvBindingStrength, ) -> Result
value
to out
, taking into account the possible context
to place parenthesis as needed. Read moreSource§fn characteristic<I: RingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
fn characteristic<I: RingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
ZZ
. Read morefn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn zero(&self) -> Self::Element
fn one(&self) -> Self::Element
fn neg_one(&self) -> Self::Element
fn square(&self, value: &mut Self::Element)
fn negate(&self, value: Self::Element) -> Self::Element
fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32)
fn mul_int(&self, lhs: Self::Element, rhs: i32) -> Self::Element
fn mul_int_ref(&self, lhs: &Self::Element, rhs: i32) -> Self::Element
Source§fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
lhs := rhs - lhs
.Source§fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
lhs := rhs - lhs
.fn add_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn add_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn add_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn add(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
fn sub_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn sub_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn sub_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn sub(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn mul_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn mul_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn mul(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
Source§fn pow_gen<R: RingStore>(
&self,
x: Self::Element,
power: &El<R>,
integers: R,
) -> Self::Elementwhere
R::Type: IntegerRing,
fn pow_gen<R: RingStore>(
&self,
x: Self::Element,
power: &El<R>,
integers: R,
) -> Self::Elementwhere
R::Type: IntegerRing,
x
to the power of an arbitrary, nonnegative integer given by
a custom integer ring implementation. Read moreSource§impl<R> RingExtension for FractionFieldImplBase<R>
impl<R> RingExtension for FractionFieldImplBase<R>
Source§fn from(&self, x: El<Self::BaseRing>) -> Self::Element
fn from(&self, x: El<Self::BaseRing>) -> Self::Element
Source§fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)
fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)
lhs := lhs * rhs
, where rhs
is mapped into this
ring via RingExtension::from_ref()
. Note that this may be
faster than self.mul_assign(lhs, self.from_ref(rhs))
.Source§fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element
fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element
Source§fn mul_assign_base_through_hom<S: ?Sized + RingBase, H: Homomorphism<S, <Self::BaseRing as RingStore>::Type>>(
&self,
lhs: &mut Self::Element,
rhs: &S::Element,
hom: H,
)
fn mul_assign_base_through_hom<S: ?Sized + RingBase, H: Homomorphism<S, <Self::BaseRing as RingStore>::Type>>( &self, lhs: &mut Self::Element, rhs: &S::Element, hom: H, )
lhs := lhs * rhs
, where rhs
is mapped into this ring
via the given homomorphism, followed by the inclusion (as specified by
RingExtension::from_ref()
). Read moreSource§impl<R> StrassenHint for FractionFieldImplBase<R>
impl<R> StrassenHint for FractionFieldImplBase<R>
Source§default fn strassen_threshold(&self) -> usize
default fn strassen_threshold(&self) -> usize
StrassenAlgorithm
will use the Strassen algorithm. Read moreimpl<R> Copy for FractionFieldImplBase<R>
impl<R> Domain for FractionFieldImplBase<R>
Auto Trait Implementations§
impl<R> Freeze for FractionFieldImplBase<R>where
R: Freeze,
impl<R> RefUnwindSafe for FractionFieldImplBase<R>where
R: RefUnwindSafe,
impl<R> Send for FractionFieldImplBase<R>where
R: Send,
impl<R> Sync for FractionFieldImplBase<R>where
R: Sync,
impl<R> Unpin for FractionFieldImplBase<R>where
R: Unpin,
impl<R> UnwindSafe for FractionFieldImplBase<R>where
R: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<R> ComputeInnerProduct for R
impl<R> ComputeInnerProduct for R
Source§default fn inner_product_ref_fst<'a, I>(
&self,
els: I,
) -> <R as RingBase>::Element
default fn inner_product_ref_fst<'a, I>( &self, els: I, ) -> <R as RingBase>::Element
sum_i lhs[i] * rhs[i]
.Source§default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
sum_i lhs[i] * rhs[i]
.Source§impl<R, S> CooleyTuckeyButterfly<S> for R
impl<R, S> CooleyTuckeyButterfly<S> for R
Source§default fn butterfly<V, H>(
&self,
hom: H,
values: &mut V,
twiddle: &<S as RingBase>::Element,
i1: usize,
i2: usize,
)
default fn butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
(values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2])
. Read moreSource§default fn butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
(x, y) := (x + twiddle * y, x - twiddle * y)
. Read moreSource§default fn inv_butterfly<V, H>(
&self,
hom: H,
values: &mut V,
twiddle: &<S as RingBase>::Element,
i1: usize,
i2: usize,
)
default fn inv_butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
(values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle)
Read moreSource§default fn inv_butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn inv_butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
(x, y) := (x + y, (x - y) * twiddle)
Read moreSource§default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
CooleyTuckeyButterfly::butterfly_new()
that the inputs are in this form.Source§default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
CooleyTuckeyButterfly::inv_butterfly_new()
that the inputs are in this form.Source§impl<R, S> CooleyTukeyRadix3Butterfly<S> for R
impl<R, S> CooleyTukeyRadix3Butterfly<S> for R
Source§default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
Possibly pre-processes elements before the FFT starts. Here you can bring ring element
into a certain form, and assume during CooleyTukeyRadix3Butterfly::butterfly()
that the inputs are in this form.
Source§default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element
into a certain form, and assume during CooleyTukeyRadix3Butterfly::inv_butterfly()
that the inputs are in this form.
Source§default fn butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr_z_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr_z_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
(a, b, c) := (a + t b + t^2 c, a + t z b + t^2 z^2 c, a + t z^2 b + t^2 z c)
. Read moreSource§default fn inv_butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn inv_butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
(a, b, c) := (a + b + c, t (a + z^2 b + z c), t^2 (a + z b + z^2 c))
. Read moreSource§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<R> KaratsubaHint for R
impl<R> KaratsubaHint for R
Source§default fn karatsuba_threshold(&self) -> usize
default fn karatsuba_threshold(&self) -> usize
KaratsubaAlgorithm
will use the Karatsuba algorithm. Read moreSource§impl<R> LinSolveRing for Rwhere
R: PrincipalIdealRing + ?Sized,
impl<R> LinSolveRing for Rwhere
R: PrincipalIdealRing + ?Sized,
Source§default fn solve_right<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, <R as RingBase>::Element>,
rhs: SubmatrixMut<'_, V2, <R as RingBase>::Element>,
out: SubmatrixMut<'_, V3, <R as RingBase>::Element>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<<R as RingBase>::Element>,
V2: AsPointerToSlice<<R as RingBase>::Element>,
V3: AsPointerToSlice<<R as RingBase>::Element>,
A: Allocator,
default fn solve_right<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, <R as RingBase>::Element>,
rhs: SubmatrixMut<'_, V2, <R as RingBase>::Element>,
out: SubmatrixMut<'_, V3, <R as RingBase>::Element>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<<R as RingBase>::Element>,
V2: AsPointerToSlice<<R as RingBase>::Element>,
V3: AsPointerToSlice<<R as RingBase>::Element>,
A: Allocator,
Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R> StrassenHint for R
impl<R> StrassenHint for R
Source§default fn strassen_threshold(&self) -> usize
default fn strassen_threshold(&self) -> usize
StrassenAlgorithm
will use the Strassen algorithm. Read more