pub struct CooMatrix<T> { /* private fields */ }
Expand description
A COO representation of a sparse matrix.
A COO matrix stores entries in coordinate-form, that is triplets (i, j, v)
, where i
and j
correspond to row and column indices of the entry, and v
to the value of the entry.
The format is of limited use for standard matrix operations. Its main purpose is to facilitate
easy construction of other, more efficient matrix formats (such as CSR/COO), and the
conversion between different formats.
§Format
For given dimensions nrows
and ncols
, the matrix is represented by three same-length
arrays row_indices
, col_indices
and values
that constitute the coordinate triplets
of the matrix. The indices must be in bounds, but duplicate entries are explicitly allowed.
Upon conversion to other formats, the duplicate entries may be summed together. See the
documentation for the respective conversion functions.
§Examples
use nalgebra_sparse::{coo::CooMatrix, csr::CsrMatrix, csc::CscMatrix};
// Initialize a matrix with all zeros (no explicitly stored entries).
let mut coo = CooMatrix::new(4, 4);
// Or initialize it with a set of triplets
coo = CooMatrix::try_from_triplets(4, 4, vec![1, 2], vec![0, 1], vec![3.0, 4.0]).unwrap();
// Push a few triplets
coo.push(2, 0, 1.0);
coo.push(0, 1, 2.0);
// Convert to other matrix formats
let csr = CsrMatrix::from(&coo);
let csc = CscMatrix::from(&coo);
Implementations§
Source§impl<T: Scalar> CooMatrix<T>
impl<T: Scalar> CooMatrix<T>
Sourcepub fn push_matrix<R: Dim, C: Dim, S: RawStorage<T, R, C>>(
&mut self,
r: usize,
c: usize,
m: &Matrix<T, R, C, S>,
)
pub fn push_matrix<R: Dim, C: Dim, S: RawStorage<T, R, C>>( &mut self, r: usize, c: usize, m: &Matrix<T, R, C, S>, )
Pushes a dense matrix into the sparse one.
This adds the dense matrix m
starting at the r
th row and c
th column
to the matrix.
§Panics
Panics if any part of the dense matrix is out of bounds of the sparse matrix
when inserted at (r, c)
.
Source§impl<T> CooMatrix<T>
impl<T> CooMatrix<T>
Sourcepub fn new(nrows: usize, ncols: usize) -> Self
pub fn new(nrows: usize, ncols: usize) -> Self
Construct a zero COO matrix of the given dimensions.
Specifically, the collection of triplets - corresponding to explicitly stored entries - is empty, so that the matrix (implicitly) represented by the COO matrix consists of all zero entries.
Sourcepub fn zeros(nrows: usize, ncols: usize) -> Self
pub fn zeros(nrows: usize, ncols: usize) -> Self
Construct a zero COO matrix of the given dimensions.
Specifically, the collection of triplets - corresponding to explicitly stored entries - is empty, so that the matrix (implicitly) represented by the COO matrix consists of all zero entries.
Sourcepub fn try_from_triplets(
nrows: usize,
ncols: usize,
row_indices: Vec<usize>,
col_indices: Vec<usize>,
values: Vec<T>,
) -> Result<Self, SparseFormatError>
pub fn try_from_triplets( nrows: usize, ncols: usize, row_indices: Vec<usize>, col_indices: Vec<usize>, values: Vec<T>, ) -> Result<Self, SparseFormatError>
Try to construct a COO matrix from the given dimensions and a collection of (i, j, v) triplets.
Returns an error if either row or column indices contain indices out of bounds, or if the data arrays do not all have the same length. Note that the COO format inherently supports duplicate entries.
Sourcepub fn try_from_triplets_iter(
nrows: usize,
ncols: usize,
triplets: impl IntoIterator<Item = (usize, usize, T)>,
) -> Result<Self, SparseFormatError>
pub fn try_from_triplets_iter( nrows: usize, ncols: usize, triplets: impl IntoIterator<Item = (usize, usize, T)>, ) -> Result<Self, SparseFormatError>
Try to construct a COO matrix from the given dimensions and a finite iterator of (i, j, v) triplets.
Returns an error if either row or column indices contain indices out of bounds. Note that the COO format inherently supports duplicate entries, but they are not eagerly summed.
Implementation note: Calls try_from_triplets so each value is scanned twice.
Sourcepub fn triplet_iter(&self) -> impl Iterator<Item = (usize, usize, &T)>
pub fn triplet_iter(&self) -> impl Iterator<Item = (usize, usize, &T)>
An iterator over triplets (i, j, v).
Sourcepub fn triplet_iter_mut(
&mut self,
) -> impl Iterator<Item = (usize, usize, &mut T)>
pub fn triplet_iter_mut( &mut self, ) -> impl Iterator<Item = (usize, usize, &mut T)>
A mutable iterator over triplets (i, j, v).
Sourcepub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for COO matrix by at least additional
elements.
This increase the capacities of triplet holding arrays by reserving more space to avoid
frequent reallocations in push
operations.
§Panics
Panics if any of the individual allocation of triplet arrays fails.
§Example
let mut coo = CooMatrix::new(4, 4);
// Reserve capacity in advance
coo.reserve(10);
coo.push(1, 0, 3.0);
Sourcepub fn push(&mut self, i: usize, j: usize, v: T)
pub fn push(&mut self, i: usize, j: usize, v: T)
Push a single triplet to the matrix.
This adds the value v
to the i
th row and j
th column in the matrix.
§Panics
Panics if i
or j
is out of bounds.
Sourcepub fn clear_triplets(&mut self)
pub fn clear_triplets(&mut self)
Clear all triplets from the matrix.
Sourcepub fn nnz(&self) -> usize
pub fn nnz(&self) -> usize
The number of explicitly stored entries in the matrix.
This number includes duplicate entries. For example, if the CooMatrix
contains duplicate
entries, then it may have a different number of non-zeros as reported by nnz()
compared
to its CSR representation.
Sourcepub fn row_indices(&self) -> &[usize]
pub fn row_indices(&self) -> &[usize]
The row indices of the explicitly stored entries.
Sourcepub fn col_indices(&self) -> &[usize]
pub fn col_indices(&self) -> &[usize]
The column indices of the explicitly stored entries.
Sourcepub fn disassemble(self) -> (Vec<usize>, Vec<usize>, Vec<T>)
pub fn disassemble(self) -> (Vec<usize>, Vec<usize>, Vec<T>)
Disassembles the matrix into individual triplet arrays.
§Examples
let row_indices = vec![0, 1];
let col_indices = vec![1, 2];
let values = vec![1.0, 2.0];
let coo = CooMatrix::try_from_triplets(2, 3, row_indices, col_indices, values)
.unwrap();
let (row_idx, col_idx, val) = coo.disassemble();
assert_eq!(row_idx, vec![0, 1]);
assert_eq!(col_idx, vec![1, 2]);
assert_eq!(val, vec![1.0, 2.0]);
Trait Implementations§
Source§impl<T: Clone> SparseAccess<T> for CooMatrix<T>
impl<T: Clone> SparseAccess<T> for CooMatrix<T>
impl<T: Eq> Eq for CooMatrix<T>
impl<T: MatrixMarketScalar> MatrixMarketExport<T> for CooMatrix<T>
impl<T> StructuralPartialEq for CooMatrix<T>
Auto Trait Implementations§
impl<T> Freeze for CooMatrix<T>
impl<T> RefUnwindSafe for CooMatrix<T>where
T: RefUnwindSafe,
impl<T> Send for CooMatrix<T>where
T: Send,
impl<T> Sync for CooMatrix<T>where
T: Sync,
impl<T> Unpin for CooMatrix<T>where
T: Unpin,
impl<T> UnwindSafe for CooMatrix<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.